AnanthZeke commited on
Commit
b76ec0d
1 Parent(s): 8d29141

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: distilbert-base-multilingual-cased-indic_glue
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-base-multilingual-cased-indic_glue
19
+
20
+ This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2873
23
+ - Precision: 0.8099
24
+ - Recall: 0.8251
25
+ - F1: 0.8175
26
+ - Accuracy: 0.9114
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 2
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.6012 | 0.31 | 200 | 0.3849 | 0.7566 | 0.7108 | 0.7330 | 0.8722 |
58
+ | 0.377 | 0.62 | 400 | 0.3365 | 0.7696 | 0.7837 | 0.7766 | 0.8886 |
59
+ | 0.3205 | 0.94 | 600 | 0.3093 | 0.7875 | 0.7864 | 0.7869 | 0.8961 |
60
+ | 0.2517 | 1.25 | 800 | 0.3050 | 0.8039 | 0.8131 | 0.8085 | 0.9050 |
61
+ | 0.2034 | 1.56 | 1000 | 0.2950 | 0.8129 | 0.8130 | 0.8130 | 0.9098 |
62
+ | 0.1968 | 1.88 | 1200 | 0.2873 | 0.8099 | 0.8251 | 0.8175 | 0.9114 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.29.2
68
+ - Pytorch 2.0.0+cu118
69
+ - Datasets 2.12.0
70
+ - Tokenizers 0.13.3