--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1618 - Accuracy: 0.937 - F1: 0.9370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7529 | 1.0 | 250 | 0.2673 | 0.918 | 0.9187 | | 0.1932 | 2.0 | 500 | 0.1696 | 0.9325 | 0.9322 | | 0.1291 | 3.0 | 750 | 0.1491 | 0.937 | 0.9375 | | 0.0996 | 4.0 | 1000 | 0.1465 | 0.937 | 0.9367 | | 0.0806 | 5.0 | 1250 | 0.1475 | 0.9385 | 0.9382 | | 0.0698 | 6.0 | 1500 | 0.1567 | 0.936 | 0.9360 | | 0.0595 | 7.0 | 1750 | 0.1611 | 0.934 | 0.9338 | | 0.0519 | 8.0 | 2000 | 0.1618 | 0.937 | 0.9370 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1