AndreMitri commited on
Commit
726a6ee
1 Parent(s): 76fc1d2

Begging of RL course

Browse files
LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03a3d416463461f791709731ded651802081eb00dbf051c7c5253afd2c81533c
3
+ size 147303
LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f82f0a9a670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82f0a9a700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82f0a9a790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82f0a9a820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f82f0a9a8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f82f0a9a940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82f0a9a9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82f0a9aa60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f82f0a9aaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82f0a9ab80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82f0a9ac10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82f0a9aca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f82f0a92840>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673884377245105950,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1K1T2u8YW649hnNWbybjBZ6rs5C5OmtAAAgD8AAIA/Gno8PXEIertVZdq8p4YIPWPeqDzzQOS9AACAPwAAgD+NSBA+pPCxPdiJ9b08J2++lGL4Ox1DKL0AAAAAAAAAAJowgz36Maw/ejQzPjU0D7/CbUQ9Je9WPAAAAAAAAAAAEyU0PsO+Oj+lPFA+0Dzovg56VT5lzk09AAAAAAAAAADAoEW+xUKuPohyCj6yiPG+AIwBvnMyHT4AAAAAAAAAAAbVEj44ytS714gWPD6BXbqdkEq98Wk6uwAAgD8AAIA/Gmrbvc8XELwy2Uw+Bxwuvgum0rz7gTy/AACAPwAAAAA6Woc+zE/vPtXWqb2cieK+aoi2PTRuxr0AAAAAAAAAAICppb2PFle6GLrFtJrPYC6ZRNm21A6wMwAAgD8AAIA/jbzGvYXL3LvaVR4+z5IVPRb8J71gLVo9AACAPwAAAAAmZJA9j856uv1tNbnlXZq0LE/iOkM2TjgAAAAAAACAP810hD0UFqc5itl0MwzqMK+MBRG67SnNswAAgD8AAIA/ZkBGPC+efj8uQYg95a9PvwmJfLwa75y9AAAAAAAAAADNEcs8FOSbum1mUrK6a+uwL9xXugAsUDMAAIA/AACAP9MIHr4cjxe8tgaouqQynbiXUIg9dZbZOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQwQcQtWHckCUhpRSlIwBbJRLsIwBdJRHQJdiMfcN6Pd1fZQoaAZoCWgPQwh5sMVu3x90QJSGlFKUaBVLxmgWR0CXYmwjdHlPdX2UKGgGaAloD0MIryKjAxKqcUCUhpRSlGgVS9RoFkdAl2LFmSQo1HV9lChoBmgJaA9DCDZ0sz9QSHFAlIaUUpRoFUvXaBZHQJdjVzXBgu11fZQoaAZoCWgPQwgRGyycpENcQJSGlFKUaBVN6ANoFkdAl2PghW5panV9lChoBmgJaA9DCKhSswdaFHJAlIaUUpRoFUu/aBZHQJdkIS5AhSt1fZQoaAZoCWgPQwjMtWgB2iFzQJSGlFKUaBVL1WgWR0CXZQsJIDoydX2UKGgGaAloD0MIV1uxv6yfcECUhpRSlGgVS8loFkdAl2U/v8ZUDXV9lChoBmgJaA9DCGhYjLoW0XJAlIaUUpRoFUvLaBZHQJdlX6be/Hp1fZQoaAZoCWgPQwhpAkUsYkZzQJSGlFKUaBVL2GgWR0CXZXCrcTJydX2UKGgGaAloD0MIZHPVPAdgckCUhpRSlGgVS91oFkdAl2cDZ+QU6HV9lChoBmgJaA9DCGIx6lq7lnJAlIaUUpRoFUuzaBZHQJdnV4cFQl91fZQoaAZoCWgPQwh2N091SLxyQJSGlFKUaBVLyGgWR0CXaD6/Zdv9dX2UKGgGaAloD0MIaVTgZFvdcECUhpRSlGgVS9NoFkdAl2j82NvOyHV9lChoBmgJaA9DCMDMd/ATJnFAlIaUUpRoFUvsaBZHQJdpMdIXj2l1fZQoaAZoCWgPQwjekbHa/BZxQJSGlFKUaBVLzWgWR0CXaWGViWmhdX2UKGgGaAloD0MIfy4aMl6HcECUhpRSlGgVS8toFkdAl2ovek56t3V9lChoBmgJaA9DCFDFjVvM0nBAlIaUUpRoFUvZaBZHQJdqWRYA80V1fZQoaAZoCWgPQwimSL4SyHlxQJSGlFKUaBVNIAFoFkdAl2pxHPNVznV9lChoBmgJaA9DCFA0D2ARsnFAlIaUUpRoFUu/aBZHQJdrMCDEm6Z1fZQoaAZoCWgPQwj7IwwDFghxQJSGlFKUaBVL12gWR0CXa9wRXfZVdX2UKGgGaAloD0MIzhd7Lz7PbkCUhpRSlGgVS+loFkdAl2wNlNDc/XV9lChoBmgJaA9DCC+FB83ukXBAlIaUUpRoFUv8aBZHQJds2Y2Kl551fZQoaAZoCWgPQwha9E4F3ORuQJSGlFKUaBVLsWgWR0CXbOZ/CqIadX2UKGgGaAloD0MIpvJ2hNPUcECUhpRSlGgVS+doFkdAl243q/ub7XV9lChoBmgJaA9DCIElV7G4mnFAlIaUUpRoFUvTaBZHQJdu5D3M6il1fZQoaAZoCWgPQwielbTim5hvQJSGlFKUaBVLwWgWR0CXcHnhKlHjdX2UKGgGaAloD0MIFAg7xWqAckCUhpRSlGgVS+JoFkdAl3Co3rD633V9lChoBmgJaA9DCBIVqpvLnHFAlIaUUpRoFUvxaBZHQJdw/KEFnqV1fZQoaAZoCWgPQwiPHOkMDC9xQJSGlFKUaBVL0WgWR0CXcTAxzq8ldX2UKGgGaAloD0MIXHFxVC4rckCUhpRSlGgVS+RoFkdAl3GNdRiw0XV9lChoBmgJaA9DCET9LmzN0nJAlIaUUpRoFUvaaBZHQJdyUG4ZuQ91fZQoaAZoCWgPQwgXf9sTZIZyQJSGlFKUaBVLqmgWR0CXcobUwztUdX2UKGgGaAloD0MIIlSp2UMLcECUhpRSlGgVS8poFkdAl3KD8pCrtHV9lChoBmgJaA9DCD4l58SeOHFAlIaUUpRoFUvXaBZHQJdzIt6HCXR1fZQoaAZoCWgPQwiwOJz5VQ1xQJSGlFKUaBVLwmgWR0CXc1j7Q9iddX2UKGgGaAloD0MIIenTKvqXcUCUhpRSlGgVS79oFkdAl3SnWFvhqHV9lChoBmgJaA9DCJfGL7zSAnBAlIaUUpRoFU1oAWgWR0CXdLBjWkJsdX2UKGgGaAloD0MIukvirIj/bkCUhpRSlGgVS9loFkdAl3Yn7xd6cHV9lChoBmgJaA9DCOnSvyQVHXBAlIaUUpRoFUu4aBZHQJd2mQkona51fZQoaAZoCWgPQwgbutkfqF1yQJSGlFKUaBVLuGgWR0CXdr2pAD7qdX2UKGgGaAloD0MIG5yIfq23ckCUhpRSlGgVS8toFkdAl3fh3qzJIXV9lChoBmgJaA9DCDmdZKsLS3JAlIaUUpRoFUvAaBZHQJd35ASnLq51fZQoaAZoCWgPQwgb2gBswNNjQJSGlFKUaBVN6ANoFkdAl3iF6u4gBHV9lChoBmgJaA9DCH4eozzzanJAlIaUUpRoFUvEaBZHQJd4/GYKIBR1fZQoaAZoCWgPQwjwaU5eJI1yQJSGlFKUaBVLrGgWR0CXeQ0q6OHWdX2UKGgGaAloD0MIA9GTMqkicECUhpRSlGgVS7RoFkdAl3kV2zOX3XV9lChoBmgJaA9DCF0Y6UXt53FAlIaUUpRoFUvSaBZHQJd5aLzf7791fZQoaAZoCWgPQwiDaRg+In5wQJSGlFKUaBVL9GgWR0CXejZ5AyEddX2UKGgGaAloD0MISguXVVhHckCUhpRSlGgVS+loFkdAl3wUP1+RYHV9lChoBmgJaA9DCIM1zqaj0nBAlIaUUpRoFUvsaBZHQJd8Nc5bQkZ1fZQoaAZoCWgPQwibyTfb3FJwQJSGlFKUaBVLxmgWR0CXfHGXXyy2dX2UKGgGaAloD0MIB9MwfISFc0CUhpRSlGgVS9hoFkdAl31yOBDohnV9lChoBmgJaA9DCKmFksmpPXJAlIaUUpRoFUvYaBZHQJd9k10knkV1fZQoaAZoCWgPQwgYBcHjG5txQJSGlFKUaBVLqGgWR0CXfcFG5MDfdX2UKGgGaAloD0MIUMjO2xiNcECUhpRSlGgVS71oFkdAl33Qmqo60nV9lChoBmgJaA9DCIdu9gfKxGRAlIaUUpRoFU3oA2gWR0CXfogDA8B/dX2UKGgGaAloD0MIIJvkR/yAbkCUhpRSlGgVS69oFkdAl37M+FDfFnV9lChoBmgJaA9DCDRLAtTUxEdAlIaUUpRoFUuwaBZHQJd/oQI2OyV1fZQoaAZoCWgPQwjPpE3VPRRyQJSGlFKUaBVL1mgWR0CXf5kX1rZbdX2UKGgGaAloD0MIAtU/iGR0cECUhpRSlGgVTQYBaBZHQJd/7pTuOS51fZQoaAZoCWgPQwhyUS0iCs1wQJSGlFKUaBVL5WgWR0CXf+9fCyhSdX2UKGgGaAloD0MIAHMtWgBZckCUhpRSlGgVS+VoFkdAl3/+6qbSZ3V9lChoBmgJaA9DCB77WSzFimZAlIaUUpRoFU3oA2gWR0CXgOdYGMXKdX2UKGgGaAloD0MInMO12kNCcUCUhpRSlGgVS6hoFkdAl4Irzf779HV9lChoBmgJaA9DCGJITiYu1XFAlIaUUpRoFUvYaBZHQJeCb7SApa11fZQoaAZoCWgPQwhBnIcTWOZxQJSGlFKUaBVL3WgWR0CXgnb7j1f3dX2UKGgGaAloD0MISrclcgF+cUCUhpRSlGgVS61oFkdAl4KcpCrtFHV9lChoBmgJaA9DCC9RvTUwam5AlIaUUpRoFUu5aBZHQJeCvQjUuth1fZQoaAZoCWgPQwgbhSSzuuBwQJSGlFKUaBVLuWgWR0CXgt1GLDQ7dX2UKGgGaAloD0MI4X7AA8OYcUCUhpRSlGgVS+doFkdAl4MDsQd0aXV9lChoBmgJaA9DCNBk/zyNS3JAlIaUUpRoFUu0aBZHQJeDitMfzSV1fZQoaAZoCWgPQwiuvOR/cqJwQJSGlFKUaBVLw2gWR0CXhOTPjXFtdX2UKGgGaAloD0MIiV+xhovrb0CUhpRSlGgVS8RoFkdAl4T1wtJ4B3V9lChoBmgJaA9DCOCcEaU9lXJAlIaUUpRoFUvdaBZHQJeFVufmLcd1fZQoaAZoCWgPQwhtVKcD2aNyQJSGlFKUaBVL4mgWR0CXhW91EE1VdX2UKGgGaAloD0MIBMk7h/JuckCUhpRSlGgVS91oFkdAl4WquSwGGHV9lChoBmgJaA9DCDM334iuA3BAlIaUUpRoFUu+aBZHQJeFv8EV32V1fZQoaAZoCWgPQwjZ6JyfoiRwQJSGlFKUaBVLs2gWR0CXhq/LTx5LdX2UKGgGaAloD0MIL6hvmRMZcUCUhpRSlGgVS6loFkdAl4b21hLGrHV9lChoBmgJaA9DCDdvnBSmZXBAlIaUUpRoFUupaBZHQJeH5HiFTNt1fZQoaAZoCWgPQwhFZFjF21JyQJSGlFKUaBVL3mgWR0CXiEYIBzV+dX2UKGgGaAloD0MI0F59PLRZcUCUhpRSlGgVS+hoFkdAl4hnlXA/LXV9lChoBmgJaA9DCIZyol0FGXBAlIaUUpRoFU0LAWgWR0CXiWqoZQ54dX2UKGgGaAloD0MIzxH5LuU0cUCUhpRSlGgVS6ZoFkdAl4pW2LHdXXV9lChoBmgJaA9DCDV/TGtTIm9AlIaUUpRoFUvFaBZHQJeKWasp5NZ1fZQoaAZoCWgPQwjSrGwf8qxyQJSGlFKUaBVL0mgWR0CXisNSIgvEdX2UKGgGaAloD0MI1ZelnRpJcUCUhpRSlGgVTS8BaBZHQJeK/LRrrPd1fZQoaAZoCWgPQwhpVyHlJ19yQJSGlFKUaBVL22gWR0CXi3CFsYVJdX2UKGgGaAloD0MIXtbEAt+3cUCUhpRSlGgVS6doFkdAl4t3sLORknV9lChoBmgJaA9DCKYol8bvO3BAlIaUUpRoFUvOaBZHQJeLb7MxGlR1fZQoaAZoCWgPQwgNAFXc+O1yQJSGlFKUaBVL5GgWR0CXi8f+0gKXdX2UKGgGaAloD0MIi8OZX00Nc0CUhpRSlGgVS8poFkdAl4yecMEzPHV9lChoBmgJaA9DCMPVARD3hG5AlIaUUpRoFUuoaBZHQJeNAA1ejVR1fZQoaAZoCWgPQwjxRXu8UKxwQJSGlFKUaBVLvGgWR0CXjTcKgIyCdX2UKGgGaAloD0MIU3k7wmlAZkCUhpRSlGgVTegDaBZHQJeOCliz9jx1fZQoaAZoCWgPQwhG0QMfA+dvQJSGlFKUaBVL22gWR0CXjnoYekpJdX2UKGgGaAloD0MIHhX/d0T5bkCUhpRSlGgVS7xoFkdAl49idOIqLHV9lChoBmgJaA9DCLVQMjn1hHJAlIaUUpRoFUvqaBZHQJePzJJXhfl1fZQoaAZoCWgPQwi7Y7FNqrVvQJSGlFKUaBVLyGgWR0CXkBySFGoadWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09cea5e9149715e87d0d49d2acdfbc6ae2e58dcd133304e8028cd81a9515acab
3
+ size 87929
LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d83a2f713d455b65257d4892c01dd52137e3857a98289af0e1d1569900d5064
3
+ size 43393
LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.90 +/- 44.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f82f0a9a670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82f0a9a700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82f0a9a790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82f0a9a820>", "_build": "<function ActorCriticPolicy._build at 0x7f82f0a9a8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f82f0a9a940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82f0a9a9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82f0a9aa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f82f0a9aaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82f0a9ab80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82f0a9ac10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82f0a9aca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f82f0a92840>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673884377245105950, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1K1T2u8YW649hnNWbybjBZ6rs5C5OmtAAAgD8AAIA/Gno8PXEIertVZdq8p4YIPWPeqDzzQOS9AACAPwAAgD+NSBA+pPCxPdiJ9b08J2++lGL4Ox1DKL0AAAAAAAAAAJowgz36Maw/ejQzPjU0D7/CbUQ9Je9WPAAAAAAAAAAAEyU0PsO+Oj+lPFA+0Dzovg56VT5lzk09AAAAAAAAAADAoEW+xUKuPohyCj6yiPG+AIwBvnMyHT4AAAAAAAAAAAbVEj44ytS714gWPD6BXbqdkEq98Wk6uwAAgD8AAIA/Gmrbvc8XELwy2Uw+Bxwuvgum0rz7gTy/AACAPwAAAAA6Woc+zE/vPtXWqb2cieK+aoi2PTRuxr0AAAAAAAAAAICppb2PFle6GLrFtJrPYC6ZRNm21A6wMwAAgD8AAIA/jbzGvYXL3LvaVR4+z5IVPRb8J71gLVo9AACAPwAAAAAmZJA9j856uv1tNbnlXZq0LE/iOkM2TjgAAAAAAACAP810hD0UFqc5itl0MwzqMK+MBRG67SnNswAAgD8AAIA/ZkBGPC+efj8uQYg95a9PvwmJfLwa75y9AAAAAAAAAADNEcs8FOSbum1mUrK6a+uwL9xXugAsUDMAAIA/AACAP9MIHr4cjxe8tgaouqQynbiXUIg9dZbZOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQwQcQtWHckCUhpRSlIwBbJRLsIwBdJRHQJdiMfcN6Pd1fZQoaAZoCWgPQwh5sMVu3x90QJSGlFKUaBVLxmgWR0CXYmwjdHlPdX2UKGgGaAloD0MIryKjAxKqcUCUhpRSlGgVS9RoFkdAl2LFmSQo1HV9lChoBmgJaA9DCDZ0sz9QSHFAlIaUUpRoFUvXaBZHQJdjVzXBgu11fZQoaAZoCWgPQwgRGyycpENcQJSGlFKUaBVN6ANoFkdAl2PghW5panV9lChoBmgJaA9DCKhSswdaFHJAlIaUUpRoFUu/aBZHQJdkIS5AhSt1fZQoaAZoCWgPQwjMtWgB2iFzQJSGlFKUaBVL1WgWR0CXZQsJIDoydX2UKGgGaAloD0MIV1uxv6yfcECUhpRSlGgVS8loFkdAl2U/v8ZUDXV9lChoBmgJaA9DCGhYjLoW0XJAlIaUUpRoFUvLaBZHQJdlX6be/Hp1fZQoaAZoCWgPQwhpAkUsYkZzQJSGlFKUaBVL2GgWR0CXZXCrcTJydX2UKGgGaAloD0MIZHPVPAdgckCUhpRSlGgVS91oFkdAl2cDZ+QU6HV9lChoBmgJaA9DCGIx6lq7lnJAlIaUUpRoFUuzaBZHQJdnV4cFQl91fZQoaAZoCWgPQwh2N091SLxyQJSGlFKUaBVLyGgWR0CXaD6/Zdv9dX2UKGgGaAloD0MIaVTgZFvdcECUhpRSlGgVS9NoFkdAl2j82NvOyHV9lChoBmgJaA9DCMDMd/ATJnFAlIaUUpRoFUvsaBZHQJdpMdIXj2l1fZQoaAZoCWgPQwjekbHa/BZxQJSGlFKUaBVLzWgWR0CXaWGViWmhdX2UKGgGaAloD0MIfy4aMl6HcECUhpRSlGgVS8toFkdAl2ovek56t3V9lChoBmgJaA9DCFDFjVvM0nBAlIaUUpRoFUvZaBZHQJdqWRYA80V1fZQoaAZoCWgPQwimSL4SyHlxQJSGlFKUaBVNIAFoFkdAl2pxHPNVznV9lChoBmgJaA9DCFA0D2ARsnFAlIaUUpRoFUu/aBZHQJdrMCDEm6Z1fZQoaAZoCWgPQwj7IwwDFghxQJSGlFKUaBVL12gWR0CXa9wRXfZVdX2UKGgGaAloD0MIzhd7Lz7PbkCUhpRSlGgVS+loFkdAl2wNlNDc/XV9lChoBmgJaA9DCC+FB83ukXBAlIaUUpRoFUv8aBZHQJds2Y2Kl551fZQoaAZoCWgPQwha9E4F3ORuQJSGlFKUaBVLsWgWR0CXbOZ/CqIadX2UKGgGaAloD0MIpvJ2hNPUcECUhpRSlGgVS+doFkdAl243q/ub7XV9lChoBmgJaA9DCIElV7G4mnFAlIaUUpRoFUvTaBZHQJdu5D3M6il1fZQoaAZoCWgPQwielbTim5hvQJSGlFKUaBVLwWgWR0CXcHnhKlHjdX2UKGgGaAloD0MIFAg7xWqAckCUhpRSlGgVS+JoFkdAl3Co3rD633V9lChoBmgJaA9DCBIVqpvLnHFAlIaUUpRoFUvxaBZHQJdw/KEFnqV1fZQoaAZoCWgPQwiPHOkMDC9xQJSGlFKUaBVL0WgWR0CXcTAxzq8ldX2UKGgGaAloD0MIXHFxVC4rckCUhpRSlGgVS+RoFkdAl3GNdRiw0XV9lChoBmgJaA9DCET9LmzN0nJAlIaUUpRoFUvaaBZHQJdyUG4ZuQ91fZQoaAZoCWgPQwgXf9sTZIZyQJSGlFKUaBVLqmgWR0CXcobUwztUdX2UKGgGaAloD0MIIlSp2UMLcECUhpRSlGgVS8poFkdAl3KD8pCrtHV9lChoBmgJaA9DCD4l58SeOHFAlIaUUpRoFUvXaBZHQJdzIt6HCXR1fZQoaAZoCWgPQwiwOJz5VQ1xQJSGlFKUaBVLwmgWR0CXc1j7Q9iddX2UKGgGaAloD0MIIenTKvqXcUCUhpRSlGgVS79oFkdAl3SnWFvhqHV9lChoBmgJaA9DCJfGL7zSAnBAlIaUUpRoFU1oAWgWR0CXdLBjWkJsdX2UKGgGaAloD0MIukvirIj/bkCUhpRSlGgVS9loFkdAl3Yn7xd6cHV9lChoBmgJaA9DCOnSvyQVHXBAlIaUUpRoFUu4aBZHQJd2mQkona51fZQoaAZoCWgPQwgbutkfqF1yQJSGlFKUaBVLuGgWR0CXdr2pAD7qdX2UKGgGaAloD0MIG5yIfq23ckCUhpRSlGgVS8toFkdAl3fh3qzJIXV9lChoBmgJaA9DCDmdZKsLS3JAlIaUUpRoFUvAaBZHQJd35ASnLq51fZQoaAZoCWgPQwgb2gBswNNjQJSGlFKUaBVN6ANoFkdAl3iF6u4gBHV9lChoBmgJaA9DCH4eozzzanJAlIaUUpRoFUvEaBZHQJd4/GYKIBR1fZQoaAZoCWgPQwjwaU5eJI1yQJSGlFKUaBVLrGgWR0CXeQ0q6OHWdX2UKGgGaAloD0MIA9GTMqkicECUhpRSlGgVS7RoFkdAl3kV2zOX3XV9lChoBmgJaA9DCF0Y6UXt53FAlIaUUpRoFUvSaBZHQJd5aLzf7791fZQoaAZoCWgPQwiDaRg+In5wQJSGlFKUaBVL9GgWR0CXejZ5AyEddX2UKGgGaAloD0MISguXVVhHckCUhpRSlGgVS+loFkdAl3wUP1+RYHV9lChoBmgJaA9DCIM1zqaj0nBAlIaUUpRoFUvsaBZHQJd8Nc5bQkZ1fZQoaAZoCWgPQwibyTfb3FJwQJSGlFKUaBVLxmgWR0CXfHGXXyy2dX2UKGgGaAloD0MIB9MwfISFc0CUhpRSlGgVS9hoFkdAl31yOBDohnV9lChoBmgJaA9DCKmFksmpPXJAlIaUUpRoFUvYaBZHQJd9k10knkV1fZQoaAZoCWgPQwgYBcHjG5txQJSGlFKUaBVLqGgWR0CXfcFG5MDfdX2UKGgGaAloD0MIUMjO2xiNcECUhpRSlGgVS71oFkdAl33Qmqo60nV9lChoBmgJaA9DCIdu9gfKxGRAlIaUUpRoFU3oA2gWR0CXfogDA8B/dX2UKGgGaAloD0MIIJvkR/yAbkCUhpRSlGgVS69oFkdAl37M+FDfFnV9lChoBmgJaA9DCDRLAtTUxEdAlIaUUpRoFUuwaBZHQJd/oQI2OyV1fZQoaAZoCWgPQwjPpE3VPRRyQJSGlFKUaBVL1mgWR0CXf5kX1rZbdX2UKGgGaAloD0MIAtU/iGR0cECUhpRSlGgVTQYBaBZHQJd/7pTuOS51fZQoaAZoCWgPQwhyUS0iCs1wQJSGlFKUaBVL5WgWR0CXf+9fCyhSdX2UKGgGaAloD0MIAHMtWgBZckCUhpRSlGgVS+VoFkdAl3/+6qbSZ3V9lChoBmgJaA9DCB77WSzFimZAlIaUUpRoFU3oA2gWR0CXgOdYGMXKdX2UKGgGaAloD0MInMO12kNCcUCUhpRSlGgVS6hoFkdAl4Irzf779HV9lChoBmgJaA9DCGJITiYu1XFAlIaUUpRoFUvYaBZHQJeCb7SApa11fZQoaAZoCWgPQwhBnIcTWOZxQJSGlFKUaBVL3WgWR0CXgnb7j1f3dX2UKGgGaAloD0MISrclcgF+cUCUhpRSlGgVS61oFkdAl4KcpCrtFHV9lChoBmgJaA9DCC9RvTUwam5AlIaUUpRoFUu5aBZHQJeCvQjUuth1fZQoaAZoCWgPQwgbhSSzuuBwQJSGlFKUaBVLuWgWR0CXgt1GLDQ7dX2UKGgGaAloD0MI4X7AA8OYcUCUhpRSlGgVS+doFkdAl4MDsQd0aXV9lChoBmgJaA9DCNBk/zyNS3JAlIaUUpRoFUu0aBZHQJeDitMfzSV1fZQoaAZoCWgPQwiuvOR/cqJwQJSGlFKUaBVLw2gWR0CXhOTPjXFtdX2UKGgGaAloD0MIiV+xhovrb0CUhpRSlGgVS8RoFkdAl4T1wtJ4B3V9lChoBmgJaA9DCOCcEaU9lXJAlIaUUpRoFUvdaBZHQJeFVufmLcd1fZQoaAZoCWgPQwhtVKcD2aNyQJSGlFKUaBVL4mgWR0CXhW91EE1VdX2UKGgGaAloD0MIBMk7h/JuckCUhpRSlGgVS91oFkdAl4WquSwGGHV9lChoBmgJaA9DCDM334iuA3BAlIaUUpRoFUu+aBZHQJeFv8EV32V1fZQoaAZoCWgPQwjZ6JyfoiRwQJSGlFKUaBVLs2gWR0CXhq/LTx5LdX2UKGgGaAloD0MIL6hvmRMZcUCUhpRSlGgVS6loFkdAl4b21hLGrHV9lChoBmgJaA9DCDdvnBSmZXBAlIaUUpRoFUupaBZHQJeH5HiFTNt1fZQoaAZoCWgPQwhFZFjF21JyQJSGlFKUaBVL3mgWR0CXiEYIBzV+dX2UKGgGaAloD0MI0F59PLRZcUCUhpRSlGgVS+hoFkdAl4hnlXA/LXV9lChoBmgJaA9DCIZyol0FGXBAlIaUUpRoFU0LAWgWR0CXiWqoZQ54dX2UKGgGaAloD0MIzxH5LuU0cUCUhpRSlGgVS6ZoFkdAl4pW2LHdXXV9lChoBmgJaA9DCDV/TGtTIm9AlIaUUpRoFUvFaBZHQJeKWasp5NZ1fZQoaAZoCWgPQwjSrGwf8qxyQJSGlFKUaBVL0mgWR0CXisNSIgvEdX2UKGgGaAloD0MI1ZelnRpJcUCUhpRSlGgVTS8BaBZHQJeK/LRrrPd1fZQoaAZoCWgPQwhpVyHlJ19yQJSGlFKUaBVL22gWR0CXi3CFsYVJdX2UKGgGaAloD0MIXtbEAt+3cUCUhpRSlGgVS6doFkdAl4t3sLORknV9lChoBmgJaA9DCKYol8bvO3BAlIaUUpRoFUvOaBZHQJeLb7MxGlR1fZQoaAZoCWgPQwgNAFXc+O1yQJSGlFKUaBVL5GgWR0CXi8f+0gKXdX2UKGgGaAloD0MIi8OZX00Nc0CUhpRSlGgVS8poFkdAl4yecMEzPHV9lChoBmgJaA9DCMPVARD3hG5AlIaUUpRoFUuoaBZHQJeNAA1ejVR1fZQoaAZoCWgPQwjxRXu8UKxwQJSGlFKUaBVLvGgWR0CXjTcKgIyCdX2UKGgGaAloD0MIU3k7wmlAZkCUhpRSlGgVTegDaBZHQJeOCliz9jx1fZQoaAZoCWgPQwhG0QMfA+dvQJSGlFKUaBVL22gWR0CXjnoYekpJdX2UKGgGaAloD0MIHhX/d0T5bkCUhpRSlGgVS7xoFkdAl49idOIqLHV9lChoBmgJaA9DCLVQMjn1hHJAlIaUUpRoFUvqaBZHQJePzJJXhfl1fZQoaAZoCWgPQwi7Y7FNqrVvQJSGlFKUaBVLyGgWR0CXkBySFGoadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.8967608854865, "std_reward": 44.58837529307034, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T16:19:43.305702"}