AnnaLissa commited on
Commit
ed98c3f
1 Parent(s): 7335605

Upload bert.py

Browse files
Files changed (1) hide show
  1. bert.py +64 -0
bert.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.model_selection import train_test_split
3
+ from transformers import BertTokenizer, TFBertForSequenceClassification
4
+ import tensorflow as tf
5
+
6
+ # Load preprocessed data
7
+ def load_data(file_path="preprocessed_reviews.csv"):
8
+ return pd.read_csv("preprocessed_reviews.csv")
9
+
10
+ # Tokenize text using BERT tokenizer
11
+
12
+ def tokenize_text(tokenizer, texts, max_length):
13
+ encodings = tokenizer(texts.tolist(), padding=True, truncation=True, max_length=max_length, return_tensors="tf")
14
+ # Convert BatchEncoding to dictionary
15
+ encodings_dict = {key: value.numpy() for key, value in encodings.items()}
16
+ return encodings_dict
17
+
18
+
19
+ if __name__ == "__main__":
20
+ # Load preprocessed data
21
+ data = load_data("preprocessed_reviews.csv")
22
+
23
+ # Check if 'sentiment' column exists
24
+ if 'sentiment' in data.columns:
25
+ # Split data into train and validation sets
26
+ train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
27
+
28
+ # Tokenize text using BERT tokenizer
29
+ max_length = 128
30
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
31
+ train_inputs = tokenize_text(tokenizer, train_data['clean_text'], max_length)
32
+ val_inputs = tokenize_text(tokenizer, val_data['clean_text'], max_length)
33
+
34
+ # Convert 'sentiment' column to numerical format
35
+ num_labels = len(data['sentiment'].unique())
36
+ train_labels = train_data['sentiment'].astype('category').cat.codes.values
37
+ val_labels = val_data['sentiment'].astype('category').cat.codes.values
38
+
39
+ # Fine-tuning BERT model for sequence classification
40
+ model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=num_labels)
41
+ optimizer = tf.keras.optimizers.Adam(learning_rate=2e-5)
42
+ loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
43
+ metrics = ['accuracy']
44
+ model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
45
+
46
+ # Train the model
47
+ history = model.fit(
48
+ train_inputs,
49
+ train_labels,
50
+ validation_data=(val_inputs, val_labels),
51
+ epochs=3,
52
+ batch_size=32,
53
+ verbose=1
54
+ )
55
+
56
+ # Evaluate the model
57
+ loss, accuracy = model.evaluate(val_inputs, val_labels)
58
+ print(f'Validation loss: {loss}, Validation accuracy: {accuracy}')
59
+
60
+ # Save the trained model
61
+ model.save_pretrained('fine_tuned_bert_model')
62
+
63
+ else:
64
+ raise ValueError("The 'sentiment' column is not found in the DataFrame.")