File size: 7,087 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
using System;
using UnityEngine;
using System.Linq;
using Unity.MLAgents;
using Unity.MLAgents.Sensors;
using Unity.MLAgents.Actuators;
using UnityEngine.Rendering;
using UnityEngine.Serialization;

public class GridAgent : Agent
{
    [FormerlySerializedAs("m_Area")]
    [Header("Specific to GridWorld")]
    public GridArea area;
    public float timeBetweenDecisionsAtInference;
    float m_TimeSinceDecision;

    [Tooltip("Because we want an observation right before making a decision, we can force " +
        "a camera to render before making a decision. Place the agentCam here if using " +
        "RenderTexture as observations.")]
    public Camera renderCamera;

    VectorSensorComponent m_GoalSensor;

    public enum GridGoal
    {
        GreenPlus,
        RedEx,
    }

    // Visual representations of the agent. Both are blue on top, but different colors on the bottom - this
    // allows the user to see which corresponds to the current goal, but it's not visible to the camera.
    // Only one is active at a time.
    public GameObject GreenBottom;
    public GameObject RedBottom;

    GridGoal m_CurrentGoal;

    public GridGoal CurrentGoal
    {
        get { return m_CurrentGoal; }
        set
        {
            switch (value)
            {
                case GridGoal.GreenPlus:
                    GreenBottom.SetActive(true);
                    RedBottom.SetActive(false);
                    break;
                case GridGoal.RedEx:
                    GreenBottom.SetActive(false);
                    RedBottom.SetActive(true);
                    break;
            }
            m_CurrentGoal = value;
        }
    }

    [Tooltip("Selecting will turn on action masking. Note that a model trained with action " +
        "masking turned on may not behave optimally when action masking is turned off.")]
    public bool maskActions = true;

    const int k_NoAction = 0;  // do nothing!
    const int k_Up = 1;
    const int k_Down = 2;
    const int k_Left = 3;
    const int k_Right = 4;

    EnvironmentParameters m_ResetParams;

    public override void Initialize()
    {
        m_GoalSensor = this.GetComponent<VectorSensorComponent>();
        m_ResetParams = Academy.Instance.EnvironmentParameters;
    }

    public override void CollectObservations(VectorSensor sensor)
    {
        Array values = Enum.GetValues(typeof(GridGoal));

        if (m_GoalSensor is object)
        {
            int goalNum = (int)CurrentGoal;
            m_GoalSensor.GetSensor().AddOneHotObservation(goalNum, values.Length);
        }
    }

    public override void WriteDiscreteActionMask(IDiscreteActionMask actionMask)
    {
        // Mask the necessary actions if selected by the user.
        if (maskActions)
        {
            // Prevents the agent from picking an action that would make it collide with a wall
            var positionX = (int)transform.localPosition.x;
            var positionZ = (int)transform.localPosition.z;
            var maxPosition = (int)m_ResetParams.GetWithDefault("gridSize", 5f) - 1;

            if (positionX == 0)
            {
                actionMask.SetActionEnabled(0, k_Left, false);
            }

            if (positionX == maxPosition)
            {
                actionMask.SetActionEnabled(0, k_Right, false);
            }

            if (positionZ == 0)
            {
                actionMask.SetActionEnabled(0, k_Down, false);
            }

            if (positionZ == maxPosition)
            {
                actionMask.SetActionEnabled(0, k_Up, false);
            }
        }
    }

    // to be implemented by the developer
    public override void OnActionReceived(ActionBuffers actionBuffers)

    {
        AddReward(-0.01f);
        var action = actionBuffers.DiscreteActions[0];

        var targetPos = transform.position;
        switch (action)
        {
            case k_NoAction:
                // do nothing
                break;
            case k_Right:
                targetPos = transform.position + new Vector3(1f, 0, 0f);
                break;
            case k_Left:
                targetPos = transform.position + new Vector3(-1f, 0, 0f);
                break;
            case k_Up:
                targetPos = transform.position + new Vector3(0f, 0, 1f);
                break;
            case k_Down:
                targetPos = transform.position + new Vector3(0f, 0, -1f);
                break;
            default:
                throw new ArgumentException("Invalid action value");
        }

        var hit = Physics.OverlapBox(
            targetPos, new Vector3(0.3f, 0.3f, 0.3f));
        if (hit.Where(col => col.gameObject.CompareTag("wall")).ToArray().Length == 0)
        {
            transform.position = targetPos;

            if (hit.Where(col => col.gameObject.CompareTag("plus")).ToArray().Length == 1)
            {
                ProvideReward(GridGoal.GreenPlus);
                EndEpisode();
            }
            else if (hit.Where(col => col.gameObject.CompareTag("ex")).ToArray().Length == 1)
            {
                ProvideReward(GridGoal.RedEx);
                EndEpisode();
            }
        }
    }

    private void ProvideReward(GridGoal hitObject)
    {
        if (CurrentGoal == hitObject)
        {
            SetReward(1f);
        }
        else
        {
            SetReward(-1f);
        }
    }

    public override void Heuristic(in ActionBuffers actionsOut)
    {
        var discreteActionsOut = actionsOut.DiscreteActions;
        discreteActionsOut[0] = k_NoAction;
        if (Input.GetKey(KeyCode.D))
        {
            discreteActionsOut[0] = k_Right;
        }
        if (Input.GetKey(KeyCode.W))
        {
            discreteActionsOut[0] = k_Up;
        }
        if (Input.GetKey(KeyCode.A))
        {
            discreteActionsOut[0] = k_Left;
        }
        if (Input.GetKey(KeyCode.S))
        {
            discreteActionsOut[0] = k_Down;
        }
    }

    // to be implemented by the developer
    public override void OnEpisodeBegin()
    {
        area.AreaReset();
        Array values = Enum.GetValues(typeof(GridGoal));
        if (m_GoalSensor is object)
        {
            CurrentGoal = (GridGoal)values.GetValue(UnityEngine.Random.Range(0, values.Length));
        }
        else
        {
            CurrentGoal = GridGoal.GreenPlus;
        }
    }

    public void FixedUpdate()
    {
        WaitTimeInference();
    }

    void WaitTimeInference()
    {
        if (renderCamera != null && SystemInfo.graphicsDeviceType != GraphicsDeviceType.Null)
        {
            renderCamera.Render();
        }

        if (Academy.Instance.IsCommunicatorOn)
        {
            RequestDecision();
        }
        else
        {
            if (m_TimeSinceDecision >= timeBetweenDecisionsAtInference)
            {
                m_TimeSinceDecision = 0f;
                RequestDecision();
            }
            else
            {
                m_TimeSinceDecision += Time.fixedDeltaTime;
            }
        }
    }
}