File size: 14,031 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Colab-UnityEnvironment-1-Run.ipynb",
"private_outputs": true,
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"language": "python",
"display_name": "Python 3"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"source": [],
"metadata": {
"collapsed": false
}
}
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "pbVXrmEsLXDt"
},
"source": [
"# ML-Agents Open a UnityEnvironment\n",
"<img src=\"https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/images/image-banner.png?raw=true\" align=\"middle\" width=\"435\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WNKTwHU3d2-l"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"metadata": {
"id": "htb-p1hSNX7D"
},
"source": [
"#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
"#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
"\n",
"import os\n",
"from IPython.display import HTML, display\n",
"\n",
"def progress(value, max=100):\n",
" return HTML(\"\"\"\n",
" <progress\n",
" value='{value}'\n",
" max='{max}',\n",
" style='width: 100%'\n",
" >\n",
" {value}\n",
" </progress>\n",
" \"\"\".format(value=value, max=max))\n",
"\n",
"pro_bar = display(progress(0, 100), display_id=True)\n",
"\n",
"try:\n",
" import google.colab\n",
" INSTALL_XVFB = True\n",
"except ImportError:\n",
" INSTALL_XVFB = 'COLAB_ALWAYS_INSTALL_XVFB' in os.environ\n",
"\n",
"if INSTALL_XVFB:\n",
" with open('frame-buffer', 'w') as writefile:\n",
" writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
"XVFB=/usr/bin/Xvfb\n",
"XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
"PIDFILE=./frame-buffer.pid\n",
"case \"$1\" in\n",
" start)\n",
" echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
" echo \".\"\n",
" ;;\n",
" stop)\n",
" echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
" rm $PIDFILE\n",
" echo \".\"\n",
" ;;\n",
" restart)\n",
" $0 stop\n",
" $0 start\n",
" ;;\n",
" *)\n",
" echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
" exit 1\n",
"esac\n",
"exit 0\n",
" \"\"\")\n",
" !sudo apt-get update\n",
" pro_bar.update(progress(10, 100))\n",
" !sudo DEBIAN_FRONTEND=noninteractive apt install -y daemon wget gdebi-core build-essential libfontenc1 libfreetype6 xorg-dev xorg\n",
" pro_bar.update(progress(20, 100))\n",
" !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
" pro_bar.update(progress(30, 100))\n",
" !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb 2>&1\n",
" pro_bar.update(progress(40, 100))\n",
" !sudo dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
" pro_bar.update(progress(50, 100))\n",
" !sudo dpkg -i xvfb.deb 2>&1\n",
" pro_bar.update(progress(70, 100))\n",
" !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
" pro_bar.update(progress(80, 100))\n",
" !rm xvfb.deb\n",
" pro_bar.update(progress(90, 100))\n",
" !bash frame-buffer start\n",
" os.environ[\"DISPLAY\"] = \":1\"\n",
"pro_bar.update(progress(100, 100))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pzj7wgapAcDs"
},
"source": [
"### Installing ml-agents"
]
},
{
"cell_type": "code",
"metadata": {
"id": "N8yfQqkbebQ5"
},
"source": [
"try:\n",
" import mlagents\n",
" print(\"ml-agents already installed\")\n",
"except ImportError:\n",
" !python -m pip install -q mlagents==0.30.0\n",
" print(\"Installed ml-agents\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "_u74YhSmW6gD"
},
"source": [
"## Run the Environment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "DpZPbRvRuLZv"
},
"source": [
"#@title Select Environment { display-mode: \"form\" }\n",
"env_id = \"GridWorld\" #@param ['Basic', '3DBall', '3DBallHard', 'GridWorld', 'Hallway', 'VisualHallway', 'CrawlerDynamicTarget', 'CrawlerStaticTarget', 'Bouncer', 'SoccerTwos', 'PushBlock', 'VisualPushBlock', 'WallJump', 'Tennis', 'Reacher', 'Pyramids', 'VisualPyramids', 'Walker', 'FoodCollector', 'VisualFoodCollector', 'StrikersVsGoalie', 'WormStaticTarget', 'WormDynamicTarget']\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "P-r_cB2rqp5x"
},
"source": [
"### Start Environment from the registry"
]
},
{
"cell_type": "code",
"metadata": {
"id": "YSf-WhxbqtLw"
},
"source": [
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"from mlagents_envs.registry import default_registry\n",
"\n",
"env = default_registry[env_id].make()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "h1lIx3_l24OP"
},
"source": [
"### Reset the environment\n",
"To reset the environment, simply call `env.reset()`. This method takes no argument and returns nothing but will send a signal to the simulation to reset."
]
},
{
"cell_type": "code",
"metadata": {
"id": "dhtl0mpeqxYi"
},
"source": [
"env.reset()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "k1rwnVq2qyoO"
},
"source": [
"### Behavior Specs\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TrD0rSv92T8A"
},
"source": [
"#### Get the Behavior Specs from the Environment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "a7KatdThq7OV"
},
"source": [
"# We will only consider the first Behavior\n",
"behavior_name = list(env.behavior_specs)[0]\n",
"print(f\"Name of the behavior : {behavior_name}\")\n",
"spec = env.behavior_specs[behavior_name]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "m1L8DHADrAbe"
},
"source": [
"#### Get the Observation Space from the Behavior Specs"
]
},
{
"cell_type": "code",
"metadata": {
"id": "PqDTV5mSrJF5"
},
"source": [
"# Examine the number of observations per Agent\n",
"print(\"Number of observations : \", len(spec.observation_specs))\n",
"\n",
"# Is there a visual observation ?\n",
"# Visual observation have 3 dimensions: Height, Width and number of channels\n",
"vis_obs = any(len(spec.shape) == 3 for spec in spec.observation_specs)\n",
"print(\"Is there a visual observation ?\", vis_obs)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "yVLN_wbG1G5-"
},
"source": [
"#### Get the Action Space from the Behavior Specs"
]
},
{
"cell_type": "code",
"metadata": {
"id": "M9zk1-az1L-G"
},
"source": [
"# Is the Action continuous or multi-discrete ?\n",
"if spec.action_spec.continuous_size > 0:\n",
" print(f\"There are {spec.action_spec.continuous_size} continuous actions\")\n",
"if spec.action_spec.is_discrete():\n",
" print(f\"There are {spec.action_spec.discrete_size} discrete actions\")\n",
"\n",
"\n",
"# How many actions are possible ?\n",
"#print(f\"There are {spec.action_size} action(s)\")\n",
"\n",
"# For discrete actions only : How many different options does each action has ?\n",
"if spec.action_spec.discrete_size > 0:\n",
" for action, branch_size in enumerate(spec.action_spec.discrete_branches):\n",
" print(f\"Action number {action} has {branch_size} different options\")\n",
"\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "3cX07SGw22Lm"
},
"source": [
"### Stepping the environment"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xO5p0s0prfsQ"
},
"source": [
"#### Get the steps from the Environment\n",
"You can do this with the `env.get_steps(behavior_name)` method. If there are multiple behaviors in the Environment, you can call this method with each of the behavior's names.\n",
"_Note_ This will not move the simulation forward."
]
},
{
"cell_type": "code",
"metadata": {
"id": "ePZtcHXUrjyf"
},
"source": [
"decision_steps, terminal_steps = env.get_steps(behavior_name)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "f-Oj3ix530mx"
},
"source": [
"#### Set actions for each behavior\n",
"You can set the actions for the Agents of a Behavior by calling `env.set_actions()` you will need to specify the behavior name and pass a tensor of dimension 2. The first dimension of the action must be equal to the number of Agents that requested a decision during the step."
]
},
{
"cell_type": "code",
"metadata": {
"id": "KB-nxfbw337g"
},
"source": [
"env.set_actions(behavior_name, spec.action_spec.empty_action(len(decision_steps)))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "MQCybRs84cmq"
},
"source": [
"#### Move the simulation forward\n",
"Call `env.step()` to move the simulation forward. The simulation will progress until an Agent requestes a decision or terminates."
]
},
{
"cell_type": "code",
"metadata": {
"id": "nl3K40ZR4bh2"
},
"source": [
"env.step()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "i9gdextn2vJy"
},
"source": [
"### Observations"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iAMqnnddr8Xo"
},
"source": [
"#### Show the observations for one of the Agents\n",
"`DecisionSteps.obs` is a tuple containing all of the observations for all of the Agents with the provided Behavior name.\n",
"Each value in the tuple is an observation tensor containing the observation data for all of the agents."
]
},
{
"cell_type": "code",
"metadata": {
"id": "OJpta61TsBiO"
},
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"for index, obs_spec in enumerate(spec.observation_specs):\n",
" if len(obs_spec.shape) == 3:\n",
" print(\"Here is the first visual observation\")\n",
" plt.imshow(decision_steps.obs[index][0,:,:,:])\n",
" plt.show()\n",
"\n",
"for index, obs_spec in enumerate(spec.observation_specs):\n",
" if len(obs_spec.shape) == 1:\n",
" print(\"First vector observations : \", decision_steps.obs[index][0,:])"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "y60u21sys8kA"
},
"source": [
"### Run the Environment for a few episodes"
]
},
{
"cell_type": "code",
"metadata": {
"id": "a2uQUsoMtIUK"
},
"source": [
"for episode in range(3):\n",
" env.reset()\n",
" decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
" tracked_agent = -1 # -1 indicates not yet tracking\n",
" done = False # For the tracked_agent\n",
" episode_rewards = 0 # For the tracked_agent\n",
" while not done:\n",
" # Track the first agent we see if not tracking\n",
" # Note : len(decision_steps) = [number of agents that requested a decision]\n",
" if tracked_agent == -1 and len(decision_steps) >= 1:\n",
" tracked_agent = decision_steps.agent_id[0]\n",
"\n",
" # Generate an action for all agents\n",
" action = spec.action_spec.random_action(len(decision_steps))\n",
"\n",
" # Set the actions\n",
" env.set_actions(behavior_name, action)\n",
"\n",
" # Move the simulation forward\n",
" env.step()\n",
"\n",
" # Get the new simulation results\n",
" decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
" if tracked_agent in decision_steps: # The agent requested a decision\n",
" episode_rewards += decision_steps[tracked_agent].reward\n",
" if tracked_agent in terminal_steps: # The agent terminated its episode\n",
" episode_rewards += terminal_steps[tracked_agent].reward\n",
" done = True\n",
" print(f\"Total rewards for episode {episode} is {episode_rewards}\")\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "R-3grXNEtJPa"
},
"source": [
"### Close the Environment to free the port it is using"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vdWG6_SqtNtv"
},
"source": [
"env.close()\n",
"print(\"Closed environment\")"
],
"execution_count": null,
"outputs": []
}
]
}
|