File size: 14,031 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
{
 "nbformat": 4,
 "nbformat_minor": 0,
 "metadata": {
  "colab": {
   "name": "Colab-UnityEnvironment-1-Run.ipynb",
   "private_outputs": true,
   "provenance": [],
   "collapsed_sections": [],
   "toc_visible": true
  },
  "kernelspec": {
   "name": "python3",
   "language": "python",
   "display_name": "Python 3"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "source": [],
    "metadata": {
     "collapsed": false
    }
   }
  }
 },
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "pbVXrmEsLXDt"
   },
   "source": [
    "# ML-Agents Open a UnityEnvironment\n",
    "<img src=\"https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/images/image-banner.png?raw=true\" align=\"middle\" width=\"435\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "WNKTwHU3d2-l"
   },
   "source": [
    "## Setup"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "htb-p1hSNX7D"
   },
   "source": [
    "#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
    "#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
    "\n",
    "import os\n",
    "from IPython.display import HTML, display\n",
    "\n",
    "def progress(value, max=100):\n",
    "    return HTML(\"\"\"\n",
    "        <progress\n",
    "            value='{value}'\n",
    "            max='{max}',\n",
    "            style='width: 100%'\n",
    "        >\n",
    "            {value}\n",
    "        </progress>\n",
    "    \"\"\".format(value=value, max=max))\n",
    "\n",
    "pro_bar = display(progress(0, 100), display_id=True)\n",
    "\n",
    "try:\n",
    "  import google.colab\n",
    "  INSTALL_XVFB = True\n",
    "except ImportError:\n",
    "  INSTALL_XVFB = 'COLAB_ALWAYS_INSTALL_XVFB' in os.environ\n",
    "\n",
    "if INSTALL_XVFB:\n",
    "  with open('frame-buffer', 'w') as writefile:\n",
    "    writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
    "XVFB=/usr/bin/Xvfb\n",
    "XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
    "PIDFILE=./frame-buffer.pid\n",
    "case \"$1\" in\n",
    "  start)\n",
    "    echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
    "    /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
    "    echo \".\"\n",
    "    ;;\n",
    "  stop)\n",
    "    echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
    "    /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
    "    rm $PIDFILE\n",
    "    echo \".\"\n",
    "    ;;\n",
    "  restart)\n",
    "    $0 stop\n",
    "    $0 start\n",
    "    ;;\n",
    "  *)\n",
    "        echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
    "        exit 1\n",
    "esac\n",
    "exit 0\n",
    "    \"\"\")\n",
    "  !sudo apt-get update\n",
    "  pro_bar.update(progress(10, 100))\n",
    "  !sudo DEBIAN_FRONTEND=noninteractive apt install -y daemon wget gdebi-core build-essential libfontenc1 libfreetype6 xorg-dev xorg\n",
    "  pro_bar.update(progress(20, 100))\n",
    "  !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
    "  pro_bar.update(progress(30, 100))\n",
    "  !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb 2>&1\n",
    "  pro_bar.update(progress(40, 100))\n",
    "  !sudo dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
    "  pro_bar.update(progress(50, 100))\n",
    "  !sudo dpkg -i xvfb.deb 2>&1\n",
    "  pro_bar.update(progress(70, 100))\n",
    "  !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
    "  pro_bar.update(progress(80, 100))\n",
    "  !rm xvfb.deb\n",
    "  pro_bar.update(progress(90, 100))\n",
    "  !bash frame-buffer start\n",
    "  os.environ[\"DISPLAY\"] = \":1\"\n",
    "pro_bar.update(progress(100, 100))"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Pzj7wgapAcDs"
   },
   "source": [
    "### Installing ml-agents"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "N8yfQqkbebQ5"
   },
   "source": [
    "try:\n",
    "  import mlagents\n",
    "  print(\"ml-agents already installed\")\n",
    "except ImportError:\n",
    "  !python -m pip install -q mlagents==0.30.0\n",
    "  print(\"Installed ml-agents\")"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "_u74YhSmW6gD"
   },
   "source": [
    "## Run the Environment"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "DpZPbRvRuLZv"
   },
   "source": [
    "#@title Select Environment { display-mode: \"form\" }\n",
    "env_id = \"GridWorld\" #@param ['Basic', '3DBall', '3DBallHard', 'GridWorld', 'Hallway', 'VisualHallway', 'CrawlerDynamicTarget', 'CrawlerStaticTarget', 'Bouncer', 'SoccerTwos', 'PushBlock', 'VisualPushBlock', 'WallJump', 'Tennis', 'Reacher', 'Pyramids', 'VisualPyramids', 'Walker', 'FoodCollector', 'VisualFoodCollector', 'StrikersVsGoalie', 'WormStaticTarget', 'WormDynamicTarget']\n"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "P-r_cB2rqp5x"
   },
   "source": [
    "### Start Environment from the registry"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "YSf-WhxbqtLw"
   },
   "source": [
    "# -----------------\n",
    "# This code is used to close an env that might not have been closed before\n",
    "try:\n",
    "  env.close()\n",
    "except:\n",
    "  pass\n",
    "# -----------------\n",
    "\n",
    "from mlagents_envs.registry import default_registry\n",
    "\n",
    "env = default_registry[env_id].make()"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "h1lIx3_l24OP"
   },
   "source": [
    "### Reset the environment\n",
    "To reset the environment, simply call `env.reset()`. This method takes no argument and returns nothing but will send a signal to the simulation to reset."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "dhtl0mpeqxYi"
   },
   "source": [
    "env.reset()"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "k1rwnVq2qyoO"
   },
   "source": [
    "### Behavior Specs\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "TrD0rSv92T8A"
   },
   "source": [
    "#### Get the Behavior Specs from the Environment"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "a7KatdThq7OV"
   },
   "source": [
    "# We will only consider the first Behavior\n",
    "behavior_name = list(env.behavior_specs)[0]\n",
    "print(f\"Name of the behavior : {behavior_name}\")\n",
    "spec = env.behavior_specs[behavior_name]"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "m1L8DHADrAbe"
   },
   "source": [
    "#### Get the Observation Space from the Behavior Specs"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "PqDTV5mSrJF5"
   },
   "source": [
    "# Examine the number of observations per Agent\n",
    "print(\"Number of observations : \", len(spec.observation_specs))\n",
    "\n",
    "# Is there a visual observation ?\n",
    "# Visual observation have 3 dimensions: Height, Width and number of channels\n",
    "vis_obs = any(len(spec.shape) == 3 for spec in spec.observation_specs)\n",
    "print(\"Is there a visual observation ?\", vis_obs)"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "yVLN_wbG1G5-"
   },
   "source": [
    "#### Get the Action Space from the Behavior Specs"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "M9zk1-az1L-G"
   },
   "source": [
    "# Is the Action continuous or multi-discrete ?\n",
    "if spec.action_spec.continuous_size > 0:\n",
    "  print(f\"There are {spec.action_spec.continuous_size} continuous actions\")\n",
    "if spec.action_spec.is_discrete():\n",
    "  print(f\"There are {spec.action_spec.discrete_size} discrete actions\")\n",
    "\n",
    "\n",
    "# How many actions are possible ?\n",
    "#print(f\"There are {spec.action_size} action(s)\")\n",
    "\n",
    "# For discrete actions only : How many different options does each action has ?\n",
    "if spec.action_spec.discrete_size > 0:\n",
    "  for action, branch_size in enumerate(spec.action_spec.discrete_branches):\n",
    "    print(f\"Action number {action} has {branch_size} different options\")\n",
    "\n"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "3cX07SGw22Lm"
   },
   "source": [
    "### Stepping the environment"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "xO5p0s0prfsQ"
   },
   "source": [
    "#### Get the steps from the Environment\n",
    "You can do this with the `env.get_steps(behavior_name)` method. If there are multiple behaviors in the Environment, you can call this method with each of the behavior's names.\n",
    "_Note_ This will not move the simulation forward."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "ePZtcHXUrjyf"
   },
   "source": [
    "decision_steps, terminal_steps = env.get_steps(behavior_name)"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "f-Oj3ix530mx"
   },
   "source": [
    "#### Set actions for each behavior\n",
    "You can set the actions for the Agents of a Behavior by calling `env.set_actions()` you will need to specify the behavior name and pass a tensor of dimension 2. The first dimension of the action must be equal to the number of Agents that requested a decision during the step."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "KB-nxfbw337g"
   },
   "source": [
    "env.set_actions(behavior_name, spec.action_spec.empty_action(len(decision_steps)))"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "MQCybRs84cmq"
   },
   "source": [
    "#### Move the simulation forward\n",
    "Call `env.step()` to move the simulation forward. The simulation will progress until an Agent requestes a decision or terminates."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "nl3K40ZR4bh2"
   },
   "source": [
    "env.step()"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "i9gdextn2vJy"
   },
   "source": [
    "### Observations"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "iAMqnnddr8Xo"
   },
   "source": [
    "#### Show the observations for one of the Agents\n",
    "`DecisionSteps.obs` is a tuple containing all of the observations for all of the Agents with the provided Behavior name.\n",
    "Each value in the tuple is an observation tensor containing the observation data for all of the agents."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "OJpta61TsBiO"
   },
   "source": [
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "\n",
    "for index, obs_spec in enumerate(spec.observation_specs):\n",
    "  if len(obs_spec.shape) == 3:\n",
    "    print(\"Here is the first visual observation\")\n",
    "    plt.imshow(decision_steps.obs[index][0,:,:,:])\n",
    "    plt.show()\n",
    "\n",
    "for index, obs_spec in enumerate(spec.observation_specs):\n",
    "  if len(obs_spec.shape) == 1:\n",
    "    print(\"First vector observations : \", decision_steps.obs[index][0,:])"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "y60u21sys8kA"
   },
   "source": [
    "### Run the Environment for a few episodes"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "a2uQUsoMtIUK"
   },
   "source": [
    "for episode in range(3):\n",
    "  env.reset()\n",
    "  decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
    "  tracked_agent = -1 # -1 indicates not yet tracking\n",
    "  done = False # For the tracked_agent\n",
    "  episode_rewards = 0 # For the tracked_agent\n",
    "  while not done:\n",
    "    # Track the first agent we see if not tracking\n",
    "    # Note : len(decision_steps) = [number of agents that requested a decision]\n",
    "    if tracked_agent == -1 and len(decision_steps) >= 1:\n",
    "      tracked_agent = decision_steps.agent_id[0]\n",
    "\n",
    "    # Generate an action for all agents\n",
    "    action = spec.action_spec.random_action(len(decision_steps))\n",
    "\n",
    "    # Set the actions\n",
    "    env.set_actions(behavior_name, action)\n",
    "\n",
    "    # Move the simulation forward\n",
    "    env.step()\n",
    "\n",
    "    # Get the new simulation results\n",
    "    decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
    "    if tracked_agent in decision_steps: # The agent requested a decision\n",
    "      episode_rewards += decision_steps[tracked_agent].reward\n",
    "    if tracked_agent in terminal_steps: # The agent terminated its episode\n",
    "      episode_rewards += terminal_steps[tracked_agent].reward\n",
    "      done = True\n",
    "  print(f\"Total rewards for episode {episode} is {episode_rewards}\")\n"
   ],
   "execution_count": null,
   "outputs": []
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "R-3grXNEtJPa"
   },
   "source": [
    "### Close the Environment to free the port it is using"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "id": "vdWG6_SqtNtv"
   },
   "source": [
    "env.close()\n",
    "print(\"Closed environment\")"
   ],
   "execution_count": null,
   "outputs": []
  }
 ]
}