File size: 9,619 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Colab-UnityEnvironment-3-SideChannel.ipynb",
"private_outputs": true,
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"language": "python",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "pbVXrmEsLXDt"
},
"source": [
"# ML-Agents Use SideChannels\n",
"<img src=\"https://raw.githubusercontent.com/Unity-Technologies/ml-agents/release_20_docs/docs/images/3dball_big.png\" align=\"middle\" width=\"435\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WNKTwHU3d2-l"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"metadata": {
"id": "htb-p1hSNX7D"
},
"source": [
"#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
"#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
"\n",
"import os\n",
"from IPython.display import HTML, display\n",
"\n",
"def progress(value, max=100):\n",
" return HTML(\"\"\"\n",
" <progress\n",
" value='{value}'\n",
" max='{max}',\n",
" style='width: 100%'\n",
" >\n",
" {value}\n",
" </progress>\n",
" \"\"\".format(value=value, max=max))\n",
"\n",
"pro_bar = display(progress(0, 100), display_id=True)\n",
"\n",
"try:\n",
" import google.colab\n",
" INSTALL_XVFB = True\n",
"except ImportError:\n",
" INSTALL_XVFB = 'COLAB_ALWAYS_INSTALL_XVFB' in os.environ\n",
"\n",
"if INSTALL_XVFB:\n",
" with open('frame-buffer', 'w') as writefile:\n",
" writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
"XVFB=/usr/bin/Xvfb\n",
"XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
"PIDFILE=./frame-buffer.pid\n",
"case \"$1\" in\n",
" start)\n",
" echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
" echo \".\"\n",
" ;;\n",
" stop)\n",
" echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
" rm $PIDFILE\n",
" echo \".\"\n",
" ;;\n",
" restart)\n",
" $0 stop\n",
" $0 start\n",
" ;;\n",
" *)\n",
" echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
" exit 1\n",
"esac\n",
"exit 0\n",
" \"\"\")\n",
" !sudo apt-get update\n",
" pro_bar.update(progress(10, 100))\n",
" !sudo DEBIAN_FRONTEND=noninteractive apt install -y daemon wget gdebi-core build-essential libfontenc1 libfreetype6 xorg-dev xorg\n",
" pro_bar.update(progress(20, 100))\n",
" !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
" pro_bar.update(progress(30, 100))\n",
" !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb 2>&1\n",
" pro_bar.update(progress(40, 100))\n",
" !sudo dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
" pro_bar.update(progress(50, 100))\n",
" !sudo dpkg -i xvfb.deb 2>&1\n",
" pro_bar.update(progress(70, 100))\n",
" !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
" pro_bar.update(progress(80, 100))\n",
" !rm xvfb.deb\n",
" pro_bar.update(progress(90, 100))\n",
" !bash frame-buffer start\n",
" os.environ[\"DISPLAY\"] = \":1\"\n",
"pro_bar.update(progress(100, 100))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pzj7wgapAcDs"
},
"source": [
"### Installing ml-agents"
]
},
{
"cell_type": "code",
"metadata": {
"id": "N8yfQqkbebQ5"
},
"source": [
"try:\n",
" import mlagents\n",
" print(\"ml-agents already installed\")\n",
"except ImportError:\n",
" !python -m pip install -q mlagents==0.30.0\n",
" print(\"Installed ml-agents\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "_u74YhSmW6gD"
},
"source": [
"## Side Channel\n",
"\n",
"SideChannels are objects that can be passed to the constructor of a UnityEnvironment or the `make()` method of a registry entry to send non Reinforcement Learning related data.\n",
"More information available [here](https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/Python-API.md#communicating-additional-information-with-the-environment)\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "U4RXnhLRk7Uc"
},
"source": [
"### Engine Configuration SideChannel\n",
"The [Engine Configuration Side Channel](https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/Python-API.md#engineconfigurationchannel) is used to configure how the Unity Engine should run.\n",
"We will use the GridWorld environment to demonstrate how to use the EngineConfigurationChannel."
]
},
{
"cell_type": "code",
"metadata": {
"id": "YSf-WhxbqtLw"
},
"source": [
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"from mlagents_envs.registry import default_registry\n",
"env_id = \"GridWorld\"\n",
"\n",
"# Import the EngineConfigurationChannel class\n",
"from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel\n",
"\n",
"# Create the side channel\n",
"engine_config_channel = EngineConfigurationChannel()\n",
"\n",
"# Pass the side channel to the make method\n",
"# Note, the make method takes a LIST of SideChannel as input\n",
"env = default_registry[env_id].make(side_channels = [engine_config_channel])\n",
"\n",
"# Configure the Unity Engine\n",
"engine_config_channel.set_configuration_parameters(target_frame_rate = 30)\n",
"\n",
"env.reset()\n",
"\n",
"# ...\n",
"# Perform experiment on environment\n",
"# ...\n",
"\n",
"env.close()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "h1lIx3_l24OP"
},
"source": [
"### Environment Parameters Channel\n",
"The [Environment Parameters Side Channel](https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/Python-API.md#environmentparameters) is used to modify environment parameters during the simulation.\n",
"We will use the GridWorld environment to demonstrate how to use the EngineConfigurationChannel."
]
},
{
"cell_type": "code",
"metadata": {
"id": "dhtl0mpeqxYi"
},
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"from mlagents_envs.registry import default_registry\n",
"env_id = \"GridWorld\"\n",
"\n",
"# Import the EngineConfigurationChannel class\n",
"from mlagents_envs.side_channel.environment_parameters_channel import EnvironmentParametersChannel\n",
"\n",
"# Create the side channel\n",
"env_parameters = EnvironmentParametersChannel()\n",
"\n",
"# Pass the side channel to the make method\n",
"# Note, the make method takes a LIST of SideChannel as input\n",
"env = default_registry[env_id].make(side_channels = [env_parameters])\n",
"\n",
"env.reset()\n",
"behavior_name = list(env.behavior_specs)[0]\n",
"\n",
"print(\"Observation without changing the environment parameters\")\n",
"decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
"plt.imshow(decision_steps.obs[0][0,:,:,:])\n",
"plt.show()\n",
"\n",
"print(\"Increasing the dimensions of the grid from 5 to 7\")\n",
"env_parameters.set_float_parameter(\"gridSize\", 7)\n",
"print(\"Increasing the number of X from 1 to 5\")\n",
"env_parameters.set_float_parameter(\"numObstacles\", 5)\n",
"\n",
"# Any change to a SideChannel will only be effective after a step or reset\n",
"# In the GridWorld Environment, the grid's dimensions can only change at reset\n",
"env.reset()\n",
"\n",
"\n",
"decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
"plt.imshow(decision_steps.obs[0][0,:,:,:])\n",
"plt.show()\n",
"\n",
"\n",
"\n",
"env.close()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "k1rwnVq2qyoO"
},
"source": [
"### Creating your own Side Channels\n",
"You can send various kinds of data between a Unity Environment and Python but you will need to [create your own implementation of a Side Channel](https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/Custom-SideChannels.md#custom-side-channels) for advanced use cases.\n"
]
}
]
}
|