File size: 14,276 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "pbVXrmEsLXDt"
},
"source": [
"# ML-Agents run with Stable Baselines 3\n",
"<img src=\"https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/images/image-banner.png?raw=true\" align=\"middle\" width=\"435\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WNKTwHU3d2-l"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
"#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
"\n",
"import os\n",
"from IPython.display import HTML, display\n",
"\n",
"def progress(value, max=100):\n",
" return HTML(\"\"\"\n",
" <progress\n",
" value='{value}'\n",
" max='{max}',\n",
" style='width: 100%'\n",
" >\n",
" {value}\n",
" </progress>\n",
" \"\"\".format(value=value, max=max))\n",
"\n",
"pro_bar = display(progress(0, 100), display_id=True)\n",
"\n",
"try:\n",
" import google.colab\n",
" INSTALL_XVFB = True\n",
"except ImportError:\n",
" INSTALL_XVFB = 'COLAB_ALWAYS_INSTALL_XVFB' in os.environ\n",
"\n",
"if INSTALL_XVFB:\n",
" with open('frame-buffer', 'w') as writefile:\n",
" writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
"XVFB=/usr/bin/Xvfb\n",
"XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
"PIDFILE=./frame-buffer.pid\n",
"case \"$1\" in\n",
" start)\n",
" echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
" echo \".\"\n",
" ;;\n",
" stop)\n",
" echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
" rm $PIDFILE\n",
" echo \".\"\n",
" ;;\n",
" restart)\n",
" $0 stop\n",
" $0 start\n",
" ;;\n",
" *)\n",
" echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
" exit 1\n",
"esac\n",
"exit 0\n",
" \"\"\")\n",
" !sudo apt-get update\n",
" pro_bar.update(progress(10, 100))\n",
" !sudo DEBIAN_FRONTEND=noninteractive apt install -y daemon wget gdebi-core build-essential libfontenc1 libfreetype6 xorg-dev xorg\n",
" pro_bar.update(progress(20, 100))\n",
" !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
" pro_bar.update(progress(30, 100))\n",
" !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb 2>&1\n",
" pro_bar.update(progress(40, 100))\n",
" !sudo dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
" pro_bar.update(progress(50, 100))\n",
" !sudo dpkg -i xvfb.deb 2>&1\n",
" pro_bar.update(progress(70, 100))\n",
" !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
" pro_bar.update(progress(80, 100))\n",
" !rm xvfb.deb\n",
" pro_bar.update(progress(90, 100))\n",
" !bash frame-buffer start\n",
" os.environ[\"DISPLAY\"] = \":1\"\n",
"pro_bar.update(progress(100, 100))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pzj7wgapAcDs"
},
"source": [
"### Installing ml-agents"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "N8yfQqkbebQ5",
"pycharm": {
"is_executing": true
}
},
"outputs": [],
"source": [
"try:\n",
" import mlagents\n",
" print(\"ml-agents already installed\")\n",
"except ImportError:\n",
" !python -m pip install -q mlagents==0.30.0\n",
" print(\"Installed ml-agents\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_u74YhSmW6gD"
},
"source": [
"## Run the Environment"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P-r_cB2rqp5x"
},
"source": [
"### Import dependencies and set some high level parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YSf-WhxbqtLw"
},
"outputs": [],
"source": [
"from dataclasses import dataclass\n",
"from pathlib import Path\n",
"from typing import Callable, Any\n",
"\n",
"import gym\n",
"from gym import Env\n",
"\n",
"from stable_baselines3 import PPO\n",
"from stable_baselines3.common.vec_env import VecMonitor, VecEnv, SubprocVecEnv\n",
"from supersuit import observation_lambda_v0\n",
"\n",
"\n",
"from mlagents_envs.environment import UnityEnvironment\n",
"from mlagents_envs.envs.unity_gym_env import UnityToGymWrapper\n",
"from mlagents_envs.registry import UnityEnvRegistry, default_registry\n",
"from mlagents_envs.side_channel.engine_configuration_channel import (\n",
" EngineConfig,\n",
" EngineConfigurationChannel,\n",
")\n",
"\n",
"NUM_ENVS = 8"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Environment and Engine Configurations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Default values from CLI (See cli_utils.py)\n",
"DEFAULT_ENGINE_CONFIG = EngineConfig(\n",
" width=84,\n",
" height=84,\n",
" quality_level=4,\n",
" time_scale=20,\n",
" target_frame_rate=-1,\n",
" capture_frame_rate=60,\n",
")\n",
"\n",
"# Some config subset of an actual config.yaml file for MLA.\n",
"@dataclass\n",
"class LimitedConfig:\n",
" # The local path to a Unity executable or the name of an entry in the registry.\n",
" env_path_or_name: str\n",
" base_port: int\n",
" base_seed: int = 0\n",
" num_env: int = 1\n",
" engine_config: EngineConfig = DEFAULT_ENGINE_CONFIG\n",
" visual_obs: bool = False\n",
" # TODO: Decide if we should just tell users to always use MultiInputPolicy so we can simplify the user workflow.\n",
" # WARNING: Make sure to use MultiInputPolicy if you turn this on.\n",
" allow_multiple_obs: bool = False\n",
" env_registry: UnityEnvRegistry = default_registry"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Unity Environment SB3 Factory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def _unity_env_from_path_or_registry(\n",
" env: str, registry: UnityEnvRegistry, **kwargs: Any\n",
") -> UnityEnvironment:\n",
" if Path(env).expanduser().absolute().exists():\n",
" return UnityEnvironment(file_name=env, **kwargs)\n",
" elif env in registry:\n",
" return registry.get(env).make(**kwargs)\n",
" else:\n",
" raise ValueError(f\"Environment '{env}' wasn't a local path or registry entry\")\n",
" \n",
"def make_mla_sb3_env(config: LimitedConfig, **kwargs: Any) -> VecEnv:\n",
" def handle_obs(obs, space):\n",
" if isinstance(space, gym.spaces.Tuple):\n",
" if len(space) == 1:\n",
" return obs[0]\n",
" # Turn the tuple into a dict (stable baselines can handle spaces.Dict but not spaces.Tuple).\n",
" return {str(i): v for i, v in enumerate(obs)}\n",
" return obs\n",
"\n",
" def handle_obs_space(space):\n",
" if isinstance(space, gym.spaces.Tuple):\n",
" if len(space) == 1:\n",
" return space[0]\n",
" # Turn the tuple into a dict (stable baselines can handle spaces.Dict but not spaces.Tuple).\n",
" return gym.spaces.Dict({str(i): v for i, v in enumerate(space)})\n",
" return space\n",
"\n",
" def create_env(env: str, worker_id: int) -> Callable[[], Env]:\n",
" def _f() -> Env:\n",
" engine_configuration_channel = EngineConfigurationChannel()\n",
" engine_configuration_channel.set_configuration(config.engine_config)\n",
" kwargs[\"side_channels\"] = kwargs.get(\"side_channels\", []) + [\n",
" engine_configuration_channel\n",
" ]\n",
" unity_env = _unity_env_from_path_or_registry(\n",
" env=env,\n",
" registry=config.env_registry,\n",
" worker_id=worker_id,\n",
" base_port=config.base_port,\n",
" seed=config.base_seed + worker_id,\n",
" **kwargs,\n",
" )\n",
" new_env = UnityToGymWrapper(\n",
" unity_env=unity_env,\n",
" uint8_visual=config.visual_obs,\n",
" allow_multiple_obs=config.allow_multiple_obs,\n",
" )\n",
" new_env = observation_lambda_v0(new_env, handle_obs, handle_obs_space)\n",
" return new_env\n",
"\n",
" return _f\n",
"\n",
" env_facts = [\n",
" create_env(config.env_path_or_name, worker_id=x) for x in range(config.num_env)\n",
" ]\n",
" return SubprocVecEnv(env_facts)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Start Environment from the registry"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"env = make_mla_sb3_env(\n",
" config=LimitedConfig(\n",
" env_path_or_name='Basic', # Can use any name from a registry or a path to your own unity build.\n",
" base_port=6006,\n",
" base_seed=42,\n",
" num_env=NUM_ENVS,\n",
" allow_multiple_obs=True,\n",
" ),\n",
" no_graphics=True, # Set to false if you are running locally and want to watch the environments move around as they train.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# 250K should train to a reward ~= 0.90 for the \"Basic\" environment.\n",
"# We set the value lower here to demonstrate just a small amount of trianing.\n",
"BATCH_SIZE = 32\n",
"BUFFER_SIZE = 256\n",
"UPDATES = 50\n",
"TOTAL_TAINING_STEPS_GOAL = BUFFER_SIZE * UPDATES\n",
"BETA = 0.0005\n",
"N_EPOCHS = 3 \n",
"STEPS_PER_UPDATE = BUFFER_SIZE / NUM_ENVS\n",
"\n",
"# Helps gather stats for our eval() calls later so we can see reward stats.\n",
"env = VecMonitor(env)\n",
"\n",
"#Policy and Value function with 2 layers of 128 units each and no shared layers.\n",
"policy_kwargs = {\"net_arch\" : [{\"pi\": [32,32], \"vf\": [32,32]}]}\n",
"\n",
"model = PPO(\n",
" \"MlpPolicy\",\n",
" env,\n",
" verbose=1,\n",
" learning_rate=lambda progress: 0.0003 * (1.0 - progress),\n",
" clip_range=lambda progress: 0.2 * (1.0 - progress),\n",
" clip_range_vf=lambda progress: 0.2 * (1.0 - progress),\n",
" # Uncomment this if you want to log tensorboard results when running this notebook locally.\n",
" # tensorboard_log=\"results\",\n",
" policy_kwargs=policy_kwargs,\n",
" n_steps=int(STEPS_PER_UPDATE),\n",
" batch_size=BATCH_SIZE,\n",
" n_epochs=N_EPOCHS,\n",
" ent_coef=BETA,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Train the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# 0.93 is considered solved for the Basic environment\n",
"for i in range(UPDATES):\n",
" print(f\"Training round {i + 1}/{UPDATES}\")\n",
" # NOTE: rest_num_timesteps should only happen the first time so that tensorboard logs are consistent.\n",
" model.learn(total_timesteps=BUFFER_SIZE, reset_num_timesteps=(i == 0))\n",
" model.policy.eval()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "h1lIx3_l24OP"
},
"source": [
"### Close the environment\n",
"Frees up the ports being used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vdWG6_SqtNtv",
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"env.close()\n",
"print(\"Closed environment\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "Colab-UnityEnvironment-1-Run.ipynb",
"private_outputs": true,
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|