File size: 14,276 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "pbVXrmEsLXDt"
   },
   "source": [
    "# ML-Agents run with Stable Baselines 3\n",
    "<img src=\"https://github.com/Unity-Technologies/ml-agents/blob/release_20_docs/docs/images/image-banner.png?raw=true\" align=\"middle\" width=\"435\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "WNKTwHU3d2-l"
   },
   "source": [
    "## Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
    "#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
    "\n",
    "import os\n",
    "from IPython.display import HTML, display\n",
    "\n",
    "def progress(value, max=100):\n",
    "    return HTML(\"\"\"\n",
    "        <progress\n",
    "            value='{value}'\n",
    "            max='{max}',\n",
    "            style='width: 100%'\n",
    "        >\n",
    "            {value}\n",
    "        </progress>\n",
    "    \"\"\".format(value=value, max=max))\n",
    "\n",
    "pro_bar = display(progress(0, 100), display_id=True)\n",
    "\n",
    "try:\n",
    "  import google.colab\n",
    "  INSTALL_XVFB = True\n",
    "except ImportError:\n",
    "  INSTALL_XVFB = 'COLAB_ALWAYS_INSTALL_XVFB' in os.environ\n",
    "\n",
    "if INSTALL_XVFB:\n",
    "  with open('frame-buffer', 'w') as writefile:\n",
    "    writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
    "XVFB=/usr/bin/Xvfb\n",
    "XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
    "PIDFILE=./frame-buffer.pid\n",
    "case \"$1\" in\n",
    "  start)\n",
    "    echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
    "    /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
    "    echo \".\"\n",
    "    ;;\n",
    "  stop)\n",
    "    echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
    "    /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
    "    rm $PIDFILE\n",
    "    echo \".\"\n",
    "    ;;\n",
    "  restart)\n",
    "    $0 stop\n",
    "    $0 start\n",
    "    ;;\n",
    "  *)\n",
    "        echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
    "        exit 1\n",
    "esac\n",
    "exit 0\n",
    "    \"\"\")\n",
    "  !sudo apt-get update\n",
    "  pro_bar.update(progress(10, 100))\n",
    "  !sudo DEBIAN_FRONTEND=noninteractive apt install -y daemon wget gdebi-core build-essential libfontenc1 libfreetype6 xorg-dev xorg\n",
    "  pro_bar.update(progress(20, 100))\n",
    "  !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
    "  pro_bar.update(progress(30, 100))\n",
    "  !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb 2>&1\n",
    "  pro_bar.update(progress(40, 100))\n",
    "  !sudo dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb 2>&1\n",
    "  pro_bar.update(progress(50, 100))\n",
    "  !sudo dpkg -i xvfb.deb 2>&1\n",
    "  pro_bar.update(progress(70, 100))\n",
    "  !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
    "  pro_bar.update(progress(80, 100))\n",
    "  !rm xvfb.deb\n",
    "  pro_bar.update(progress(90, 100))\n",
    "  !bash frame-buffer start\n",
    "  os.environ[\"DISPLAY\"] = \":1\"\n",
    "pro_bar.update(progress(100, 100))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Pzj7wgapAcDs"
   },
   "source": [
    "### Installing ml-agents"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "N8yfQqkbebQ5",
    "pycharm": {
     "is_executing": true
    }
   },
   "outputs": [],
   "source": [
    "try:\n",
    "  import mlagents\n",
    "  print(\"ml-agents already installed\")\n",
    "except ImportError:\n",
    "  !python -m pip install -q mlagents==0.30.0\n",
    "  print(\"Installed ml-agents\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "_u74YhSmW6gD"
   },
   "source": [
    "## Run the Environment"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "P-r_cB2rqp5x"
   },
   "source": [
    "### Import dependencies and set some high level parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "YSf-WhxbqtLw"
   },
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from pathlib import Path\n",
    "from typing import Callable, Any\n",
    "\n",
    "import gym\n",
    "from gym import Env\n",
    "\n",
    "from stable_baselines3 import PPO\n",
    "from stable_baselines3.common.vec_env import VecMonitor, VecEnv, SubprocVecEnv\n",
    "from supersuit import observation_lambda_v0\n",
    "\n",
    "\n",
    "from mlagents_envs.environment import UnityEnvironment\n",
    "from mlagents_envs.envs.unity_gym_env import UnityToGymWrapper\n",
    "from mlagents_envs.registry import UnityEnvRegistry, default_registry\n",
    "from mlagents_envs.side_channel.engine_configuration_channel import (\n",
    "    EngineConfig,\n",
    "    EngineConfigurationChannel,\n",
    ")\n",
    "\n",
    "NUM_ENVS = 8"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Environment  and Engine Configurations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Default values from CLI (See cli_utils.py)\n",
    "DEFAULT_ENGINE_CONFIG = EngineConfig(\n",
    "    width=84,\n",
    "    height=84,\n",
    "    quality_level=4,\n",
    "    time_scale=20,\n",
    "    target_frame_rate=-1,\n",
    "    capture_frame_rate=60,\n",
    ")\n",
    "\n",
    "# Some config subset of an actual config.yaml file for MLA.\n",
    "@dataclass\n",
    "class LimitedConfig:\n",
    "    # The local path to a Unity executable or the name of an entry in the registry.\n",
    "    env_path_or_name: str\n",
    "    base_port: int\n",
    "    base_seed: int = 0\n",
    "    num_env: int = 1\n",
    "    engine_config: EngineConfig = DEFAULT_ENGINE_CONFIG\n",
    "    visual_obs: bool = False\n",
    "    # TODO: Decide if we should just tell users to always use MultiInputPolicy so we can simplify the user workflow.\n",
    "    # WARNING: Make sure to use MultiInputPolicy if you turn this on.\n",
    "    allow_multiple_obs: bool = False\n",
    "    env_registry: UnityEnvRegistry = default_registry"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Unity Environment SB3 Factory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def _unity_env_from_path_or_registry(\n",
    "    env: str, registry: UnityEnvRegistry, **kwargs: Any\n",
    ") -> UnityEnvironment:\n",
    "    if Path(env).expanduser().absolute().exists():\n",
    "        return UnityEnvironment(file_name=env, **kwargs)\n",
    "    elif env in registry:\n",
    "        return registry.get(env).make(**kwargs)\n",
    "    else:\n",
    "        raise ValueError(f\"Environment '{env}' wasn't a local path or registry entry\")\n",
    "        \n",
    "def make_mla_sb3_env(config: LimitedConfig, **kwargs: Any) -> VecEnv:\n",
    "    def handle_obs(obs, space):\n",
    "        if isinstance(space, gym.spaces.Tuple):\n",
    "            if len(space) == 1:\n",
    "                return obs[0]\n",
    "            # Turn the tuple into a dict (stable baselines can handle spaces.Dict but not spaces.Tuple).\n",
    "            return {str(i): v for i, v in enumerate(obs)}\n",
    "        return obs\n",
    "\n",
    "    def handle_obs_space(space):\n",
    "        if isinstance(space, gym.spaces.Tuple):\n",
    "            if len(space) == 1:\n",
    "                return space[0]\n",
    "            # Turn the tuple into a dict (stable baselines can handle spaces.Dict but not spaces.Tuple).\n",
    "            return gym.spaces.Dict({str(i): v for i, v in enumerate(space)})\n",
    "        return space\n",
    "\n",
    "    def create_env(env: str, worker_id: int) -> Callable[[], Env]:\n",
    "        def _f() -> Env:\n",
    "            engine_configuration_channel = EngineConfigurationChannel()\n",
    "            engine_configuration_channel.set_configuration(config.engine_config)\n",
    "            kwargs[\"side_channels\"] = kwargs.get(\"side_channels\", []) + [\n",
    "                engine_configuration_channel\n",
    "            ]\n",
    "            unity_env = _unity_env_from_path_or_registry(\n",
    "                env=env,\n",
    "                registry=config.env_registry,\n",
    "                worker_id=worker_id,\n",
    "                base_port=config.base_port,\n",
    "                seed=config.base_seed + worker_id,\n",
    "                **kwargs,\n",
    "            )\n",
    "            new_env = UnityToGymWrapper(\n",
    "                unity_env=unity_env,\n",
    "                uint8_visual=config.visual_obs,\n",
    "                allow_multiple_obs=config.allow_multiple_obs,\n",
    "            )\n",
    "            new_env = observation_lambda_v0(new_env, handle_obs, handle_obs_space)\n",
    "            return new_env\n",
    "\n",
    "        return _f\n",
    "\n",
    "    env_facts = [\n",
    "        create_env(config.env_path_or_name, worker_id=x) for x in range(config.num_env)\n",
    "    ]\n",
    "    return SubprocVecEnv(env_facts)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Start Environment from the registry"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": true,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "# -----------------\n",
    "# This code is used to close an env that might not have been closed before\n",
    "try:\n",
    "  env.close()\n",
    "except:\n",
    "  pass\n",
    "# -----------------\n",
    "\n",
    "env = make_mla_sb3_env(\n",
    "    config=LimitedConfig(\n",
    "        env_path_or_name='Basic',  # Can use any name from a registry or a path to your own unity build.\n",
    "        base_port=6006,\n",
    "        base_seed=42,\n",
    "        num_env=NUM_ENVS,\n",
    "        allow_multiple_obs=True,\n",
    "    ),\n",
    "    no_graphics=True,  # Set to false if you are running locally and want to watch the environments move around as they train.\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": true,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "# 250K should train to a reward ~= 0.90 for the \"Basic\" environment.\n",
    "# We set the value lower here to demonstrate just a small amount of trianing.\n",
    "BATCH_SIZE = 32\n",
    "BUFFER_SIZE = 256\n",
    "UPDATES = 50\n",
    "TOTAL_TAINING_STEPS_GOAL = BUFFER_SIZE * UPDATES\n",
    "BETA = 0.0005\n",
    "N_EPOCHS = 3 \n",
    "STEPS_PER_UPDATE = BUFFER_SIZE / NUM_ENVS\n",
    "\n",
    "# Helps gather stats for our eval() calls later so we can see reward stats.\n",
    "env = VecMonitor(env)\n",
    "\n",
    "#Policy and Value function with 2 layers of 128 units each and no shared layers.\n",
    "policy_kwargs = {\"net_arch\" : [{\"pi\": [32,32], \"vf\": [32,32]}]}\n",
    "\n",
    "model = PPO(\n",
    "    \"MlpPolicy\",\n",
    "    env,\n",
    "    verbose=1,\n",
    "    learning_rate=lambda progress: 0.0003 * (1.0 - progress),\n",
    "    clip_range=lambda progress: 0.2 * (1.0 - progress),\n",
    "    clip_range_vf=lambda progress: 0.2 * (1.0 - progress),\n",
    "    # Uncomment this if you want to log tensorboard results when running this notebook locally.\n",
    "    # tensorboard_log=\"results\",\n",
    "    policy_kwargs=policy_kwargs,\n",
    "    n_steps=int(STEPS_PER_UPDATE),\n",
    "    batch_size=BATCH_SIZE,\n",
    "    n_epochs=N_EPOCHS,\n",
    "    ent_coef=BETA,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Train the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": true,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "# 0.93 is considered solved for the Basic environment\n",
    "for i in range(UPDATES):\n",
    "    print(f\"Training round {i + 1}/{UPDATES}\")\n",
    "    # NOTE: rest_num_timesteps should only happen the first time so that tensorboard logs are consistent.\n",
    "    model.learn(total_timesteps=BUFFER_SIZE, reset_num_timesteps=(i == 0))\n",
    "    model.policy.eval()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "h1lIx3_l24OP"
   },
   "source": [
    "### Close the environment\n",
    "Frees up the ports being used."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "vdWG6_SqtNtv",
    "pycharm": {
     "is_executing": true,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "env.close()\n",
    "print(\"Closed environment\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "name": "Colab-UnityEnvironment-1-Run.ipynb",
   "private_outputs": true,
   "provenance": [],
   "toc_visible": true
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}