File size: 9,984 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Using an Environment Executable

This section will help you create and use built environments rather than the
Editor to interact with an environment. Using an executable has some advantages
over using the Editor:

- You can exchange executable with other people without having to share your
  entire repository.
- You can put your executable on a remote machine for faster training.
- You can use `Server Build` (`Headless`) mode for faster training (as long as the executable does not need rendering).
- You can keep using the Unity Editor for other tasks while the agents are
  training.

## Building the 3DBall environment

The first step is to open the Unity scene containing the 3D Balance Ball
environment:

1. Launch Unity.
1. On the Projects dialog, choose the **Open** option at the top of the window.
1. Using the file dialog that opens, locate the `Project` folder within the
   ML-Agents project and click **Open**.
1. In the **Project** window, navigate to the folder
   `Assets/ML-Agents/Examples/3DBall/Scenes/`.
1. Double-click the `3DBall` file to load the scene containing the Balance Ball
   environment.

![3DBall Scene](images/mlagents-Open3DBall.png)

Next, we want the set up scene to play correctly when the training process
launches our environment executable. This means:

- The environment application runs in the background.
- No dialogs require interaction.
- The correct scene loads automatically.

1. Open Player Settings (menu: **Edit** > **Project Settings** > **Player**).
1. Under **Resolution and Presentation**:
   - Ensure that **Run in Background** is Checked.
   - Ensure that **Display Resolution Dialog** is set to Disabled. (Note: this
    setting may not be available in newer versions of the editor.)
1. Open the Build Settings window (menu:**File** > **Build Settings**).
1. Choose your target platform.
   - (optional) Select β€œDevelopment Build” to
     [log debug messages](https://docs.unity3d.com/Manual/LogFiles.html).
1. If any scenes are shown in the **Scenes in Build** list, make sure that the
   3DBall Scene is the only one checked. (If the list is empty, then only the
   current scene is included in the build).
1. Click **Build**:
   - In the File dialog, navigate to your ML-Agents directory.
   - Assign a file name and click **Save**.
   - (For WindowsοΌ‰With Unity 2018.1, it will ask you to select a folder instead
     of a file name. Create a subfolder within the root directory and select
     that folder to build. In the following steps you will refer to this
     subfolder's name as `env_name`. You cannot create builds in the Assets
     folder

![Build Window](images/mlagents-BuildWindow.png)

Now that we have a Unity executable containing the simulation environment, we
can interact with it.

## Interacting with the Environment

If you want to use the [Python API](Python-LLAPI.md) to interact with your
executable, you can pass the name of the executable with the argument
'file_name' of the `UnityEnvironment`. For instance:

```python
from mlagents_envs.environment import UnityEnvironment
env = UnityEnvironment(file_name=<env_name>)
```

## Training the Environment

1. Open a command or terminal window.
1. Navigate to the folder where you installed the ML-Agents Toolkit. If you
   followed the default [installation](Installation.md), then navigate to the
   `ml-agents/` folder.
1. Run
   `mlagents-learn <trainer-config-file> --env=<env_name> --run-id=<run-identifier>`
   Where:
   - `<trainer-config-file>` is the file path of the trainer configuration yaml
   - `<env_name>` is the name and path to the executable you exported from Unity
     (without extension)
   - `<run-identifier>` is a string used to separate the results of different
     training runs

For example, if you are training with a 3DBall executable, and you saved it to
the directory where you installed the ML-Agents Toolkit, run:

```sh
mlagents-learn config/ppo/3DBall.yaml --env=3DBall --run-id=firstRun
```

And you should see something like

```console
ml-agents$ mlagents-learn config/ppo/3DBall.yaml --env=3DBall --run-id=first-run


                        β–„β–„β–„β–“β–“β–“β–“
                   β•“β–“β–“β–“β–“β–“β–“β–ˆβ–“β–“β–“β–“β–“
              ,β–„β–„β–„mβ–€β–€β–€'  ,β–“β–“β–“β–€β–“β–“β–„                           β–“β–“β–“  β–“β–“β–Œ
            β–„β–“β–“β–“β–€'      β–„β–“β–“β–€  β–“β–“β–“      β–„β–„     β–„β–„ ,β–„β–„ β–„β–„β–„β–„   ,β–„β–„ β–„β–“β–“β–Œβ–„ β–„β–„β–„    ,β–„β–„
          β–„β–“β–“β–“β–€        β–„β–“β–“β–€   β–β–“β–“β–Œ     β–“β–“β–Œ   ▐▓▓ β–β–“β–“β–“β–€β–€β–€β–“β–“β–Œ β–“β–“β–“ β–€β–“β–“β–Œβ–€ ^β–“β–“β–Œ  β•’β–“β–“β–Œ
        β–„β–“β–“β–“β–“β–“β–„β–„β–„β–„β–„β–„β–„β–„β–“β–“β–“      β–“β–€      β–“β–“β–Œ   ▐▓▓ ▐▓▓    β–“β–“β–“ β–“β–“β–“  β–“β–“β–Œ   ▐▓▓▄ β–“β–“β–Œ
        β–€β–“β–“β–“β–“β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–“β–“β–„     β–“β–“      β–“β–“β–Œ   ▐▓▓ ▐▓▓    β–“β–“β–“ β–“β–“β–“  β–“β–“β–Œ    ▐▓▓▐▓▓
          ^β–ˆβ–“β–“β–“        β–€β–“β–“β–„   β–β–“β–“β–Œ     β–“β–“β–“β–“β–„β–“β–“β–“β–“ ▐▓▓    β–“β–“β–“ β–“β–“β–“  β–“β–“β–“β–„    β–“β–“β–“β–“`
            'β–€β–“β–“β–“β–„      ^β–“β–“β–“  β–“β–“β–“       β””β–€β–€β–€β–€ β–€β–€ ^β–€β–€    `β–€β–€ `β–€β–€   'β–€β–€    β–β–“β–“β–Œ
               β–€β–€β–€β–€β–“β–„β–„β–„   β–“β–“β–“β–“β–“β–“,                                      β–“β–“β–“β–“β–€
                   `β–€β–ˆβ–“β–“β–“β–“β–“β–“β–“β–“β–“β–Œ
                        Β¬`β–€β–€β–€β–ˆβ–“

```

**Note**: If you're using Anaconda, don't forget to activate the ml-agents
environment first.

If `mlagents-learn` runs correctly and starts training, you should see something
like this:

```console
CrashReporter: initialized
Mono path[0] = '/Users/dericp/workspace/ml-agents/3DBall.app/Contents/Resources/Data/Managed'
Mono config path = '/Users/dericp/workspace/ml-agents/3DBall.app/Contents/MonoBleedingEdge/etc'
INFO:mlagents_envs:
'Ball3DAcademy' started successfully!
Unity Academy name: Ball3DAcademy

INFO:mlagents_envs:Connected new brain:
Unity brain name: Ball3DLearning
        Number of Visual Observations (per agent): 0
        Vector Observation space size (per agent): 8
        Number of stacked Vector Observation: 1
INFO:mlagents_envs:Hyperparameters for the PPO Trainer of brain Ball3DLearning:
        batch_size:          64
        beta:                0.001
        buffer_size:         12000
        epsilon:             0.2
        gamma:               0.995
        hidden_units:        128
        lambd:               0.99
        learning_rate:       0.0003
        max_steps:           5.0e4
        normalize:           True
        num_epoch:           3
        num_layers:          2
        time_horizon:        1000
        sequence_length:     64
        summary_freq:        1000
        use_recurrent:       False
        memory_size:         256
        use_curiosity:       False
        curiosity_strength:  0.01
        curiosity_enc_size:  128
        output_path: ./results/first-run-0/Ball3DLearning
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 1000. Mean Reward: 1.242. Std of Reward: 0.746. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 2000. Mean Reward: 1.319. Std of Reward: 0.693. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 3000. Mean Reward: 1.804. Std of Reward: 1.056. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 4000. Mean Reward: 2.151. Std of Reward: 1.432. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 5000. Mean Reward: 3.175. Std of Reward: 2.250. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 6000. Mean Reward: 4.898. Std of Reward: 4.019. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 7000. Mean Reward: 6.716. Std of Reward: 5.125. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 8000. Mean Reward: 12.124. Std of Reward: 11.929. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 9000. Mean Reward: 18.151. Std of Reward: 16.871. Training.
INFO:mlagents.trainers: first-run-0: Ball3DLearning: Step: 10000. Mean Reward: 27.284. Std of Reward: 28.667. Training.
```

You can press Ctrl+C to stop the training, and your trained model will be at
`results/<run-identifier>/<behavior_name>.onnx`, which corresponds to your model's
latest checkpoint. (**Note:** There is a known bug on Windows that causes the
saving of the model to fail when you early terminate the training, it's
recommended to wait until Step has reached the max_steps parameter you set in
your config YAML.) You can now embed this trained model into your Agent by
following the steps below:

1. Move your model file into
   `Project/Assets/ML-Agents/Examples/3DBall/TFModels/`.
1. Open the Unity Editor, and select the **3DBall** scene as described above.
1. Select the **3DBall** prefab from the Project window and select **Agent**.
1. Drag the `<behavior_name>.onnx` file from the Project window of the Editor to
   the **Model** placeholder in the **Ball3DAgent** inspector window.
1. Press the **Play** button at the top of the Editor.

## Training on Headless Server

To run training on headless server with no graphics rendering support, you need to turn off
graphics display in the Unity executable. There are two ways to achieve this:
1. Pass `--no-graphics` option to mlagents-learn training command. This is equivalent to
   adding `-nographics -batchmode` to the Unity executable's commandline.
2. Build your Unity executable with **Server Build**. You can find this setting in Build Settings
   in the Unity Editor.

If you want to train with graphics (for example, using camera and visual observations), you'll
need to set up display rendering support (e.g. xvfb) on you server machine. In our
[Colab Notebook Tutorials](ML-Agents-Toolkit-Documentation.md#python-tutorial-with-google-colab), the Setup section has
examples of setting up xvfb on servers.