File size: 46,120 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 |
# Table of Contents
* [mlagents\_envs.base\_env](#mlagents_envs.base_env)
* [DecisionStep](#mlagents_envs.base_env.DecisionStep)
* [DecisionSteps](#mlagents_envs.base_env.DecisionSteps)
* [agent\_id\_to\_index](#mlagents_envs.base_env.DecisionSteps.agent_id_to_index)
* [\_\_getitem\_\_](#mlagents_envs.base_env.DecisionSteps.__getitem__)
* [empty](#mlagents_envs.base_env.DecisionSteps.empty)
* [TerminalStep](#mlagents_envs.base_env.TerminalStep)
* [TerminalSteps](#mlagents_envs.base_env.TerminalSteps)
* [agent\_id\_to\_index](#mlagents_envs.base_env.TerminalSteps.agent_id_to_index)
* [\_\_getitem\_\_](#mlagents_envs.base_env.TerminalSteps.__getitem__)
* [empty](#mlagents_envs.base_env.TerminalSteps.empty)
* [ActionTuple](#mlagents_envs.base_env.ActionTuple)
* [discrete\_dtype](#mlagents_envs.base_env.ActionTuple.discrete_dtype)
* [ActionSpec](#mlagents_envs.base_env.ActionSpec)
* [is\_discrete](#mlagents_envs.base_env.ActionSpec.is_discrete)
* [is\_continuous](#mlagents_envs.base_env.ActionSpec.is_continuous)
* [discrete\_size](#mlagents_envs.base_env.ActionSpec.discrete_size)
* [empty\_action](#mlagents_envs.base_env.ActionSpec.empty_action)
* [random\_action](#mlagents_envs.base_env.ActionSpec.random_action)
* [create\_continuous](#mlagents_envs.base_env.ActionSpec.create_continuous)
* [create\_discrete](#mlagents_envs.base_env.ActionSpec.create_discrete)
* [DimensionProperty](#mlagents_envs.base_env.DimensionProperty)
* [UNSPECIFIED](#mlagents_envs.base_env.DimensionProperty.UNSPECIFIED)
* [NONE](#mlagents_envs.base_env.DimensionProperty.NONE)
* [TRANSLATIONAL\_EQUIVARIANCE](#mlagents_envs.base_env.DimensionProperty.TRANSLATIONAL_EQUIVARIANCE)
* [VARIABLE\_SIZE](#mlagents_envs.base_env.DimensionProperty.VARIABLE_SIZE)
* [ObservationType](#mlagents_envs.base_env.ObservationType)
* [DEFAULT](#mlagents_envs.base_env.ObservationType.DEFAULT)
* [GOAL\_SIGNAL](#mlagents_envs.base_env.ObservationType.GOAL_SIGNAL)
* [ObservationSpec](#mlagents_envs.base_env.ObservationSpec)
* [BehaviorSpec](#mlagents_envs.base_env.BehaviorSpec)
* [BaseEnv](#mlagents_envs.base_env.BaseEnv)
* [step](#mlagents_envs.base_env.BaseEnv.step)
* [reset](#mlagents_envs.base_env.BaseEnv.reset)
* [close](#mlagents_envs.base_env.BaseEnv.close)
* [behavior\_specs](#mlagents_envs.base_env.BaseEnv.behavior_specs)
* [set\_actions](#mlagents_envs.base_env.BaseEnv.set_actions)
* [set\_action\_for\_agent](#mlagents_envs.base_env.BaseEnv.set_action_for_agent)
* [get\_steps](#mlagents_envs.base_env.BaseEnv.get_steps)
* [mlagents\_envs.environment](#mlagents_envs.environment)
* [UnityEnvironment](#mlagents_envs.environment.UnityEnvironment)
* [\_\_init\_\_](#mlagents_envs.environment.UnityEnvironment.__init__)
* [close](#mlagents_envs.environment.UnityEnvironment.close)
* [mlagents\_envs.registry](#mlagents_envs.registry)
* [mlagents\_envs.registry.unity\_env\_registry](#mlagents_envs.registry.unity_env_registry)
* [UnityEnvRegistry](#mlagents_envs.registry.unity_env_registry.UnityEnvRegistry)
* [register](#mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.register)
* [register\_from\_yaml](#mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.register_from_yaml)
* [clear](#mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.clear)
* [\_\_getitem\_\_](#mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.__getitem__)
* [mlagents\_envs.side\_channel](#mlagents_envs.side_channel)
* [mlagents\_envs.side\_channel.raw\_bytes\_channel](#mlagents_envs.side_channel.raw_bytes_channel)
* [RawBytesChannel](#mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel)
* [on\_message\_received](#mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel.on_message_received)
* [get\_and\_clear\_received\_messages](#mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel.get_and_clear_received_messages)
* [send\_raw\_data](#mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel.send_raw_data)
* [mlagents\_envs.side\_channel.outgoing\_message](#mlagents_envs.side_channel.outgoing_message)
* [OutgoingMessage](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage)
* [\_\_init\_\_](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage.__init__)
* [write\_bool](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_bool)
* [write\_int32](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_int32)
* [write\_float32](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_float32)
* [write\_float32\_list](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_float32_list)
* [write\_string](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_string)
* [set\_raw\_bytes](#mlagents_envs.side_channel.outgoing_message.OutgoingMessage.set_raw_bytes)
* [mlagents\_envs.side\_channel.engine\_configuration\_channel](#mlagents_envs.side_channel.engine_configuration_channel)
* [EngineConfigurationChannel](#mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel)
* [on\_message\_received](#mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel.on_message_received)
* [set\_configuration\_parameters](#mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel.set_configuration_parameters)
* [set\_configuration](#mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel.set_configuration)
* [mlagents\_envs.side\_channel.side\_channel\_manager](#mlagents_envs.side_channel.side_channel_manager)
* [SideChannelManager](#mlagents_envs.side_channel.side_channel_manager.SideChannelManager)
* [process\_side\_channel\_message](#mlagents_envs.side_channel.side_channel_manager.SideChannelManager.process_side_channel_message)
* [generate\_side\_channel\_messages](#mlagents_envs.side_channel.side_channel_manager.SideChannelManager.generate_side_channel_messages)
* [mlagents\_envs.side\_channel.stats\_side\_channel](#mlagents_envs.side_channel.stats_side_channel)
* [StatsSideChannel](#mlagents_envs.side_channel.stats_side_channel.StatsSideChannel)
* [on\_message\_received](#mlagents_envs.side_channel.stats_side_channel.StatsSideChannel.on_message_received)
* [get\_and\_reset\_stats](#mlagents_envs.side_channel.stats_side_channel.StatsSideChannel.get_and_reset_stats)
* [mlagents\_envs.side\_channel.incoming\_message](#mlagents_envs.side_channel.incoming_message)
* [IncomingMessage](#mlagents_envs.side_channel.incoming_message.IncomingMessage)
* [\_\_init\_\_](#mlagents_envs.side_channel.incoming_message.IncomingMessage.__init__)
* [read\_bool](#mlagents_envs.side_channel.incoming_message.IncomingMessage.read_bool)
* [read\_int32](#mlagents_envs.side_channel.incoming_message.IncomingMessage.read_int32)
* [read\_float32](#mlagents_envs.side_channel.incoming_message.IncomingMessage.read_float32)
* [read\_float32\_list](#mlagents_envs.side_channel.incoming_message.IncomingMessage.read_float32_list)
* [read\_string](#mlagents_envs.side_channel.incoming_message.IncomingMessage.read_string)
* [get\_raw\_bytes](#mlagents_envs.side_channel.incoming_message.IncomingMessage.get_raw_bytes)
* [mlagents\_envs.side\_channel.float\_properties\_channel](#mlagents_envs.side_channel.float_properties_channel)
* [FloatPropertiesChannel](#mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel)
* [on\_message\_received](#mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.on_message_received)
* [set\_property](#mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.set_property)
* [get\_property](#mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.get_property)
* [list\_properties](#mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.list_properties)
* [get\_property\_dict\_copy](#mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.get_property_dict_copy)
* [mlagents\_envs.side\_channel.environment\_parameters\_channel](#mlagents_envs.side_channel.environment_parameters_channel)
* [EnvironmentParametersChannel](#mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel)
* [set\_float\_parameter](#mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_float_parameter)
* [set\_uniform\_sampler\_parameters](#mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_uniform_sampler_parameters)
* [set\_gaussian\_sampler\_parameters](#mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_gaussian_sampler_parameters)
* [set\_multirangeuniform\_sampler\_parameters](#mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_multirangeuniform_sampler_parameters)
* [mlagents\_envs.side\_channel.side\_channel](#mlagents_envs.side_channel.side_channel)
* [SideChannel](#mlagents_envs.side_channel.side_channel.SideChannel)
* [queue\_message\_to\_send](#mlagents_envs.side_channel.side_channel.SideChannel.queue_message_to_send)
* [on\_message\_received](#mlagents_envs.side_channel.side_channel.SideChannel.on_message_received)
* [channel\_id](#mlagents_envs.side_channel.side_channel.SideChannel.channel_id)
<a name="mlagents_envs.base_env"></a>
# mlagents\_envs.base\_env
Python Environment API for the ML-Agents Toolkit
The aim of this API is to expose Agents evolving in a simulation
to perform reinforcement learning on.
This API supports multi-agent scenarios and groups similar Agents (same
observations, actions spaces and behavior) together. These groups of Agents are
identified by their BehaviorName.
For performance reasons, the data of each group of agents is processed in a
batched manner. Agents are identified by a unique AgentId identifier that
allows tracking of Agents across simulation steps. Note that there is no
guarantee that the number or order of the Agents in the state will be
consistent across simulation steps.
A simulation steps corresponds to moving the simulation forward until at least
one agent in the simulation sends its observations to Python again. Since
Agents can request decisions at different frequencies, a simulation step does
not necessarily correspond to a fixed simulation time increment.
<a name="mlagents_envs.base_env.DecisionStep"></a>
## DecisionStep Objects
```python
class DecisionStep(NamedTuple)
```
Contains the data a single Agent collected since the last
simulation step.
- obs is a list of numpy arrays observations collected by the agent.
- reward is a float. Corresponds to the rewards collected by the agent
since the last simulation step.
- agent_id is an int and an unique identifier for the corresponding Agent.
- action_mask is an optional list of one dimensional array of booleans.
Only available when using multi-discrete actions.
Each array corresponds to an action branch. Each array contains a mask
for each action of the branch. If true, the action is not available for
the agent during this simulation step.
<a name="mlagents_envs.base_env.DecisionSteps"></a>
## DecisionSteps Objects
```python
class DecisionSteps(Mapping)
```
Contains the data a batch of similar Agents collected since the last
simulation step. Note that all Agents do not necessarily have new
information to send at each simulation step. Therefore, the ordering of
agents and the batch size of the DecisionSteps are not fixed across
simulation steps.
- obs is a list of numpy arrays observations collected by the batch of
agent. Each obs has one extra dimension compared to DecisionStep: the
first dimension of the array corresponds to the batch size of the batch.
- reward is a float vector of length batch size. Corresponds to the
rewards collected by each agent since the last simulation step.
- agent_id is an int vector of length batch size containing unique
identifier for the corresponding Agent. This is used to track Agents
across simulation steps.
- action_mask is an optional list of two dimensional array of booleans.
Only available when using multi-discrete actions.
Each array corresponds to an action branch. The first dimension of each
array is the batch size and the second contains a mask for each action of
the branch. If true, the action is not available for the agent during
this simulation step.
<a name="mlagents_envs.base_env.DecisionSteps.agent_id_to_index"></a>
#### agent\_id\_to\_index
```python
| @property
| agent_id_to_index() -> Dict[AgentId, int]
```
**Returns**:
A Dict that maps agent_id to the index of those agents in
this DecisionSteps.
<a name="mlagents_envs.base_env.DecisionSteps.__getitem__"></a>
#### \_\_getitem\_\_
```python
| __getitem__(agent_id: AgentId) -> DecisionStep
```
returns the DecisionStep for a specific agent.
**Arguments**:
- `agent_id`: The id of the agent
**Returns**:
The DecisionStep
<a name="mlagents_envs.base_env.DecisionSteps.empty"></a>
#### empty
```python
| @staticmethod
| empty(spec: "BehaviorSpec") -> "DecisionSteps"
```
Returns an empty DecisionSteps.
**Arguments**:
- `spec`: The BehaviorSpec for the DecisionSteps
<a name="mlagents_envs.base_env.TerminalStep"></a>
## TerminalStep Objects
```python
class TerminalStep(NamedTuple)
```
Contains the data a single Agent collected when its episode ended.
- obs is a list of numpy arrays observations collected by the agent.
- reward is a float. Corresponds to the rewards collected by the agent
since the last simulation step.
- interrupted is a bool. Is true if the Agent was interrupted since the last
decision step. For example, if the Agent reached the maximum number of steps for
the episode.
- agent_id is an int and an unique identifier for the corresponding Agent.
<a name="mlagents_envs.base_env.TerminalSteps"></a>
## TerminalSteps Objects
```python
class TerminalSteps(Mapping)
```
Contains the data a batch of Agents collected when their episode
terminated. All Agents present in the TerminalSteps have ended their
episode.
- obs is a list of numpy arrays observations collected by the batch of
agent. Each obs has one extra dimension compared to DecisionStep: the
first dimension of the array corresponds to the batch size of the batch.
- reward is a float vector of length batch size. Corresponds to the
rewards collected by each agent since the last simulation step.
- interrupted is an array of booleans of length batch size. Is true if the
associated Agent was interrupted since the last decision step. For example, if the
Agent reached the maximum number of steps for the episode.
- agent_id is an int vector of length batch size containing unique
identifier for the corresponding Agent. This is used to track Agents
across simulation steps.
<a name="mlagents_envs.base_env.TerminalSteps.agent_id_to_index"></a>
#### agent\_id\_to\_index
```python
| @property
| agent_id_to_index() -> Dict[AgentId, int]
```
**Returns**:
A Dict that maps agent_id to the index of those agents in
this TerminalSteps.
<a name="mlagents_envs.base_env.TerminalSteps.__getitem__"></a>
#### \_\_getitem\_\_
```python
| __getitem__(agent_id: AgentId) -> TerminalStep
```
returns the TerminalStep for a specific agent.
**Arguments**:
- `agent_id`: The id of the agent
**Returns**:
obs, reward, done, agent_id and optional action mask for a
specific agent
<a name="mlagents_envs.base_env.TerminalSteps.empty"></a>
#### empty
```python
| @staticmethod
| empty(spec: "BehaviorSpec") -> "TerminalSteps"
```
Returns an empty TerminalSteps.
**Arguments**:
- `spec`: The BehaviorSpec for the TerminalSteps
<a name="mlagents_envs.base_env.ActionTuple"></a>
## ActionTuple Objects
```python
class ActionTuple(_ActionTupleBase)
```
An object whose fields correspond to actions of different types.
Continuous and discrete actions are numpy arrays of type float32 and
int32, respectively and are type checked on construction.
Dimensions are of (n_agents, continuous_size) and (n_agents, discrete_size),
respectively. Note, this also holds when continuous or discrete size is
zero.
<a name="mlagents_envs.base_env.ActionTuple.discrete_dtype"></a>
#### discrete\_dtype
```python
| @property
| discrete_dtype() -> np.dtype
```
The dtype of a discrete action.
<a name="mlagents_envs.base_env.ActionSpec"></a>
## ActionSpec Objects
```python
class ActionSpec(NamedTuple)
```
A NamedTuple containing utility functions and information about the action spaces
for a group of Agents under the same behavior.
- num_continuous_actions is an int corresponding to the number of floats which
constitute the action.
- discrete_branch_sizes is a Tuple of int where each int corresponds to
the number of discrete actions available to the agent on an independent action branch.
<a name="mlagents_envs.base_env.ActionSpec.is_discrete"></a>
#### is\_discrete
```python
| is_discrete() -> bool
```
Returns true if this Behavior uses discrete actions
<a name="mlagents_envs.base_env.ActionSpec.is_continuous"></a>
#### is\_continuous
```python
| is_continuous() -> bool
```
Returns true if this Behavior uses continuous actions
<a name="mlagents_envs.base_env.ActionSpec.discrete_size"></a>
#### discrete\_size
```python
| @property
| discrete_size() -> int
```
Returns a an int corresponding to the number of discrete branches.
<a name="mlagents_envs.base_env.ActionSpec.empty_action"></a>
#### empty\_action
```python
| empty_action(n_agents: int) -> ActionTuple
```
Generates ActionTuple corresponding to an empty action (all zeros)
for a number of agents.
**Arguments**:
- `n_agents`: The number of agents that will have actions generated
<a name="mlagents_envs.base_env.ActionSpec.random_action"></a>
#### random\_action
```python
| random_action(n_agents: int) -> ActionTuple
```
Generates ActionTuple corresponding to a random action (either discrete
or continuous) for a number of agents.
**Arguments**:
- `n_agents`: The number of agents that will have actions generated
<a name="mlagents_envs.base_env.ActionSpec.create_continuous"></a>
#### create\_continuous
```python
| @staticmethod
| create_continuous(continuous_size: int) -> "ActionSpec"
```
Creates an ActionSpec that is homogenously continuous
<a name="mlagents_envs.base_env.ActionSpec.create_discrete"></a>
#### create\_discrete
```python
| @staticmethod
| create_discrete(discrete_branches: Tuple[int]) -> "ActionSpec"
```
Creates an ActionSpec that is homogenously discrete
<a name="mlagents_envs.base_env.DimensionProperty"></a>
## DimensionProperty Objects
```python
class DimensionProperty(IntFlag)
```
The dimension property of a dimension of an observation.
<a name="mlagents_envs.base_env.DimensionProperty.UNSPECIFIED"></a>
#### UNSPECIFIED
No properties specified.
<a name="mlagents_envs.base_env.DimensionProperty.NONE"></a>
#### NONE
No Property of the observation in that dimension. Observation can be processed with
Fully connected networks.
<a name="mlagents_envs.base_env.DimensionProperty.TRANSLATIONAL_EQUIVARIANCE"></a>
#### TRANSLATIONAL\_EQUIVARIANCE
Means it is suitable to do a convolution in this dimension.
<a name="mlagents_envs.base_env.DimensionProperty.VARIABLE_SIZE"></a>
#### VARIABLE\_SIZE
Means that there can be a variable number of observations in this dimension.
The observations are unordered.
<a name="mlagents_envs.base_env.ObservationType"></a>
## ObservationType Objects
```python
class ObservationType(Enum)
```
An Enum which defines the type of information carried in the observation
of the agent.
<a name="mlagents_envs.base_env.ObservationType.DEFAULT"></a>
#### DEFAULT
Observation information is generic.
<a name="mlagents_envs.base_env.ObservationType.GOAL_SIGNAL"></a>
#### GOAL\_SIGNAL
Observation contains goal information for current task.
<a name="mlagents_envs.base_env.ObservationSpec"></a>
## ObservationSpec Objects
```python
class ObservationSpec(NamedTuple)
```
A NamedTuple containing information about the observation of Agents.
- shape is a Tuple of int : It corresponds to the shape of
an observation's dimensions.
- dimension_property is a Tuple of DimensionProperties flag, one flag for each
dimension.
- observation_type is an enum of ObservationType.
<a name="mlagents_envs.base_env.BehaviorSpec"></a>
## BehaviorSpec Objects
```python
class BehaviorSpec(NamedTuple)
```
A NamedTuple containing information about the observation and action
spaces for a group of Agents under the same behavior.
- observation_specs is a List of ObservationSpec NamedTuple containing
information about the information of the Agent's observations such as their shapes.
The order of the ObservationSpec is the same as the order of the observations of an
agent.
- action_spec is an ActionSpec NamedTuple.
<a name="mlagents_envs.base_env.BaseEnv"></a>
## BaseEnv Objects
```python
class BaseEnv(ABC)
```
<a name="mlagents_envs.base_env.BaseEnv.step"></a>
#### step
```python
| @abstractmethod
| step() -> None
```
Signals the environment that it must move the simulation forward
by one step.
<a name="mlagents_envs.base_env.BaseEnv.reset"></a>
#### reset
```python
| @abstractmethod
| reset() -> None
```
Signals the environment that it must reset the simulation.
<a name="mlagents_envs.base_env.BaseEnv.close"></a>
#### close
```python
| @abstractmethod
| close() -> None
```
Signals the environment that it must close.
<a name="mlagents_envs.base_env.BaseEnv.behavior_specs"></a>
#### behavior\_specs
```python
| @property
| @abstractmethod
| behavior_specs() -> MappingType[str, BehaviorSpec]
```
Returns a Mapping from behavior names to behavior specs.
Agents grouped under the same behavior name have the same action and
observation specs, and are expected to behave similarly in the
environment.
Note that new keys can be added to this mapping as new policies are instantiated.
<a name="mlagents_envs.base_env.BaseEnv.set_actions"></a>
#### set\_actions
```python
| @abstractmethod
| set_actions(behavior_name: BehaviorName, action: ActionTuple) -> None
```
Sets the action for all of the agents in the simulation for the next
step. The Actions must be in the same order as the order received in
the DecisionSteps.
**Arguments**:
- `behavior_name`: The name of the behavior the agents are part of
- `action`: ActionTuple tuple of continuous and/or discrete action.
Actions are np.arrays with dimensions (n_agents, continuous_size) and
(n_agents, discrete_size), respectively.
<a name="mlagents_envs.base_env.BaseEnv.set_action_for_agent"></a>
#### set\_action\_for\_agent
```python
| @abstractmethod
| set_action_for_agent(behavior_name: BehaviorName, agent_id: AgentId, action: ActionTuple) -> None
```
Sets the action for one of the agents in the simulation for the next
step.
**Arguments**:
- `behavior_name`: The name of the behavior the agent is part of
- `agent_id`: The id of the agent the action is set for
- `action`: ActionTuple tuple of continuous and/or discrete action
Actions are np.arrays with dimensions (1, continuous_size) and
(1, discrete_size), respectively. Note, this initial dimensions of 1 is because
this action is meant for a single agent.
<a name="mlagents_envs.base_env.BaseEnv.get_steps"></a>
#### get\_steps
```python
| @abstractmethod
| get_steps(behavior_name: BehaviorName) -> Tuple[DecisionSteps, TerminalSteps]
```
Retrieves the steps of the agents that requested a step in the
simulation.
**Arguments**:
- `behavior_name`: The name of the behavior the agents are part of
**Returns**:
A tuple containing :
- A DecisionSteps NamedTuple containing the observations,
the rewards, the agent ids and the action masks for the Agents
of the specified behavior. These Agents need an action this step.
- A TerminalSteps NamedTuple containing the observations,
rewards, agent ids and interrupted flags of the agents that had their
episode terminated last step.
<a name="mlagents_envs.environment"></a>
# mlagents\_envs.environment
<a name="mlagents_envs.environment.UnityEnvironment"></a>
## UnityEnvironment Objects
```python
class UnityEnvironment(BaseEnv)
```
<a name="mlagents_envs.environment.UnityEnvironment.__init__"></a>
#### \_\_init\_\_
```python
| __init__(file_name: Optional[str] = None, worker_id: int = 0, base_port: Optional[int] = None, seed: int = 0, no_graphics: bool = False, timeout_wait: int = 60, additional_args: Optional[List[str]] = None, side_channels: Optional[List[SideChannel]] = None, log_folder: Optional[str] = None, num_areas: int = 1)
```
Starts a new unity environment and establishes a connection with the environment.
Notice: Currently communication between Unity and Python takes place over an open socket without authentication.
Ensure that the network where training takes place is secure.
:string file_name: Name of Unity environment binary.
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
If no environment is specified (i.e. file_name is None), the DEFAULT_EDITOR_PORT will be used.
:int worker_id: Offset from base_port. Used for training multiple environments simultaneously.
:bool no_graphics: Whether to run the Unity simulator in no-graphics mode
:int timeout_wait: Time (in seconds) to wait for connection from environment.
:list args: Addition Unity command line arguments
:list side_channels: Additional side channel for no-rl communication with Unity
:str log_folder: Optional folder to write the Unity Player log file into. Requires absolute path.
<a name="mlagents_envs.environment.UnityEnvironment.close"></a>
#### close
```python
| close()
```
Sends a shutdown signal to the unity environment, and closes the socket connection.
<a name="mlagents_envs.registry"></a>
# mlagents\_envs.registry
<a name="mlagents_envs.registry.unity_env_registry"></a>
# mlagents\_envs.registry.unity\_env\_registry
<a name="mlagents_envs.registry.unity_env_registry.UnityEnvRegistry"></a>
## UnityEnvRegistry Objects
```python
class UnityEnvRegistry(Mapping)
```
### UnityEnvRegistry
Provides a library of Unity environments that can be launched without the need
of downloading the Unity Editor.
The UnityEnvRegistry implements a Map, to access an entry of the Registry, use:
```python
registry = UnityEnvRegistry()
entry = registry[<environment_identifyier>]
```
An entry has the following properties :
* `identifier` : Uniquely identifies this environment
* `expected_reward` : Corresponds to the reward an agent must obtained for the task
to be considered completed.
* `description` : A human readable description of the environment.
To launch a Unity environment from a registry entry, use the `make` method:
```python
registry = UnityEnvRegistry()
env = registry[<environment_identifyier>].make()
```
<a name="mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.register"></a>
#### register
```python
| register(new_entry: BaseRegistryEntry) -> None
```
Registers a new BaseRegistryEntry to the registry. The
BaseRegistryEntry.identifier value will be used as indexing key.
If two are more environments are registered under the same key, the most
recentry added will replace the others.
<a name="mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.register_from_yaml"></a>
#### register\_from\_yaml
```python
| register_from_yaml(path_to_yaml: str) -> None
```
Registers the environments listed in a yaml file (either local or remote). Note
that the entries are registered lazily: the registration will only happen when
an environment is accessed.
The yaml file must have the following format :
```yaml
environments:
- <identifier of the first environment>:
expected_reward: <expected reward of the environment>
description: | <a multi line description of the environment>
<continued multi line description>
linux_url: <The url for the Linux executable zip file>
darwin_url: <The url for the OSX executable zip file>
win_url: <The url for the Windows executable zip file>
- <identifier of the second environment>:
expected_reward: <expected reward of the environment>
description: | <a multi line description of the environment>
<continued multi line description>
linux_url: <The url for the Linux executable zip file>
darwin_url: <The url for the OSX executable zip file>
win_url: <The url for the Windows executable zip file>
- ...
```
**Arguments**:
- `path_to_yaml`: A local path or url to the yaml file
<a name="mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.clear"></a>
#### clear
```python
| clear() -> None
```
Deletes all entries in the registry.
<a name="mlagents_envs.registry.unity_env_registry.UnityEnvRegistry.__getitem__"></a>
#### \_\_getitem\_\_
```python
| __getitem__(identifier: str) -> BaseRegistryEntry
```
Returns the BaseRegistryEntry with the provided identifier. BaseRegistryEntry
can then be used to make a Unity Environment.
**Arguments**:
- `identifier`: The identifier of the BaseRegistryEntry
**Returns**:
The associated BaseRegistryEntry
<a name="mlagents_envs.side_channel"></a>
# mlagents\_envs.side\_channel
<a name="mlagents_envs.side_channel.raw_bytes_channel"></a>
# mlagents\_envs.side\_channel.raw\_bytes\_channel
<a name="mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel"></a>
## RawBytesChannel Objects
```python
class RawBytesChannel(SideChannel)
```
This is an example of what the SideChannel for raw bytes exchange would
look like. Is meant to be used for general research purpose.
<a name="mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel.on_message_received"></a>
#### on\_message\_received
```python
| on_message_received(msg: IncomingMessage) -> None
```
Is called by the environment to the side channel. Can be called
multiple times per step if multiple messages are meant for that
SideChannel.
<a name="mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel.get_and_clear_received_messages"></a>
#### get\_and\_clear\_received\_messages
```python
| get_and_clear_received_messages() -> List[bytes]
```
returns a list of bytearray received from the environment.
<a name="mlagents_envs.side_channel.raw_bytes_channel.RawBytesChannel.send_raw_data"></a>
#### send\_raw\_data
```python
| send_raw_data(data: bytearray) -> None
```
Queues a message to be sent by the environment at the next call to
step.
<a name="mlagents_envs.side_channel.outgoing_message"></a>
# mlagents\_envs.side\_channel.outgoing\_message
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage"></a>
## OutgoingMessage Objects
```python
class OutgoingMessage()
```
Utility class for forming the message that is written to a SideChannel.
All data is written in little-endian format using the struct module.
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage.__init__"></a>
#### \_\_init\_\_
```python
| __init__()
```
Create an OutgoingMessage with an empty buffer.
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_bool"></a>
#### write\_bool
```python
| write_bool(b: bool) -> None
```
Append a boolean value.
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_int32"></a>
#### write\_int32
```python
| write_int32(i: int) -> None
```
Append an integer value.
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_float32"></a>
#### write\_float32
```python
| write_float32(f: float) -> None
```
Append a float value. It will be truncated to 32-bit precision.
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_float32_list"></a>
#### write\_float32\_list
```python
| write_float32_list(float_list: List[float]) -> None
```
Append a list of float values. They will be truncated to 32-bit precision.
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage.write_string"></a>
#### write\_string
```python
| write_string(s: str) -> None
```
Append a string value. Internally, it will be encoded to ascii, and the
encoded length will also be written to the message.
<a name="mlagents_envs.side_channel.outgoing_message.OutgoingMessage.set_raw_bytes"></a>
#### set\_raw\_bytes
```python
| set_raw_bytes(buffer: bytearray) -> None
```
Set the internal buffer to a new bytearray. This will overwrite any existing data.
**Arguments**:
- `buffer`:
**Returns**:
<a name="mlagents_envs.side_channel.engine_configuration_channel"></a>
# mlagents\_envs.side\_channel.engine\_configuration\_channel
<a name="mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel"></a>
## EngineConfigurationChannel Objects
```python
class EngineConfigurationChannel(SideChannel)
```
This is the SideChannel for engine configuration exchange. The data in the
engine configuration is as follows :
- int width;
- int height;
- int qualityLevel;
- float timeScale;
- int targetFrameRate;
- int captureFrameRate;
<a name="mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel.on_message_received"></a>
#### on\_message\_received
```python
| on_message_received(msg: IncomingMessage) -> None
```
Is called by the environment to the side channel. Can be called
multiple times per step if multiple messages are meant for that
SideChannel.
Note that Python should never receive an engine configuration from
Unity
<a name="mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel.set_configuration_parameters"></a>
#### set\_configuration\_parameters
```python
| set_configuration_parameters(width: Optional[int] = None, height: Optional[int] = None, quality_level: Optional[int] = None, time_scale: Optional[float] = None, target_frame_rate: Optional[int] = None, capture_frame_rate: Optional[int] = None) -> None
```
Sets the engine configuration. Takes as input the configurations of the
engine.
**Arguments**:
- `width`: Defines the width of the display. (Must be set alongside height)
- `height`: Defines the height of the display. (Must be set alongside width)
- `quality_level`: Defines the quality level of the simulation.
- `time_scale`: Defines the multiplier for the deltatime in the
simulation. If set to a higher value, time will pass faster in the
simulation but the physics might break.
- `target_frame_rate`: Instructs simulation to try to render at a
specified frame rate.
- `capture_frame_rate`: Instructs the simulation to consider time between
updates to always be constant, regardless of the actual frame rate.
<a name="mlagents_envs.side_channel.engine_configuration_channel.EngineConfigurationChannel.set_configuration"></a>
#### set\_configuration
```python
| set_configuration(config: EngineConfig) -> None
```
Sets the engine configuration. Takes as input an EngineConfig.
<a name="mlagents_envs.side_channel.side_channel_manager"></a>
# mlagents\_envs.side\_channel.side\_channel\_manager
<a name="mlagents_envs.side_channel.side_channel_manager.SideChannelManager"></a>
## SideChannelManager Objects
```python
class SideChannelManager()
```
<a name="mlagents_envs.side_channel.side_channel_manager.SideChannelManager.process_side_channel_message"></a>
#### process\_side\_channel\_message
```python
| process_side_channel_message(data: bytes) -> None
```
Separates the data received from Python into individual messages for each
registered side channel and calls on_message_received on them.
**Arguments**:
- `data`: The packed message sent by Unity
<a name="mlagents_envs.side_channel.side_channel_manager.SideChannelManager.generate_side_channel_messages"></a>
#### generate\_side\_channel\_messages
```python
| generate_side_channel_messages() -> bytearray
```
Gathers the messages that the registered side channels will send to Unity
and combines them into a single message ready to be sent.
<a name="mlagents_envs.side_channel.stats_side_channel"></a>
# mlagents\_envs.side\_channel.stats\_side\_channel
<a name="mlagents_envs.side_channel.stats_side_channel.StatsSideChannel"></a>
## StatsSideChannel Objects
```python
class StatsSideChannel(SideChannel)
```
Side channel that receives (string, float) pairs from the environment, so that they can eventually
be passed to a StatsReporter.
<a name="mlagents_envs.side_channel.stats_side_channel.StatsSideChannel.on_message_received"></a>
#### on\_message\_received
```python
| on_message_received(msg: IncomingMessage) -> None
```
Receive the message from the environment, and save it for later retrieval.
**Arguments**:
- `msg`:
**Returns**:
<a name="mlagents_envs.side_channel.stats_side_channel.StatsSideChannel.get_and_reset_stats"></a>
#### get\_and\_reset\_stats
```python
| get_and_reset_stats() -> EnvironmentStats
```
Returns the current stats, and resets the internal storage of the stats.
**Returns**:
<a name="mlagents_envs.side_channel.incoming_message"></a>
# mlagents\_envs.side\_channel.incoming\_message
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage"></a>
## IncomingMessage Objects
```python
class IncomingMessage()
```
Utility class for reading the message written to a SideChannel.
Values must be read in the order they were written.
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage.__init__"></a>
#### \_\_init\_\_
```python
| __init__(buffer: bytes, offset: int = 0)
```
Create a new IncomingMessage from the bytes.
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage.read_bool"></a>
#### read\_bool
```python
| read_bool(default_value: bool = False) -> bool
```
Read a boolean value from the message buffer.
**Arguments**:
- `default_value`: Default value to use if the end of the message is reached.
**Returns**:
The value read from the message, or the default value if the end was reached.
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage.read_int32"></a>
#### read\_int32
```python
| read_int32(default_value: int = 0) -> int
```
Read an integer value from the message buffer.
**Arguments**:
- `default_value`: Default value to use if the end of the message is reached.
**Returns**:
The value read from the message, or the default value if the end was reached.
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage.read_float32"></a>
#### read\_float32
```python
| read_float32(default_value: float = 0.0) -> float
```
Read a float value from the message buffer.
**Arguments**:
- `default_value`: Default value to use if the end of the message is reached.
**Returns**:
The value read from the message, or the default value if the end was reached.
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage.read_float32_list"></a>
#### read\_float32\_list
```python
| read_float32_list(default_value: List[float] = None) -> List[float]
```
Read a list of float values from the message buffer.
**Arguments**:
- `default_value`: Default value to use if the end of the message is reached.
**Returns**:
The value read from the message, or the default value if the end was reached.
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage.read_string"></a>
#### read\_string
```python
| read_string(default_value: str = "") -> str
```
Read a string value from the message buffer.
**Arguments**:
- `default_value`: Default value to use if the end of the message is reached.
**Returns**:
The value read from the message, or the default value if the end was reached.
<a name="mlagents_envs.side_channel.incoming_message.IncomingMessage.get_raw_bytes"></a>
#### get\_raw\_bytes
```python
| get_raw_bytes() -> bytes
```
Get a copy of the internal bytes used by the message.
<a name="mlagents_envs.side_channel.float_properties_channel"></a>
# mlagents\_envs.side\_channel.float\_properties\_channel
<a name="mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel"></a>
## FloatPropertiesChannel Objects
```python
class FloatPropertiesChannel(SideChannel)
```
This is the SideChannel for float properties shared with Unity.
You can modify the float properties of an environment with the commands
set_property, get_property and list_properties.
<a name="mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.on_message_received"></a>
#### on\_message\_received
```python
| on_message_received(msg: IncomingMessage) -> None
```
Is called by the environment to the side channel. Can be called
multiple times per step if multiple messages are meant for that
SideChannel.
<a name="mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.set_property"></a>
#### set\_property
```python
| set_property(key: str, value: float) -> None
```
Sets a property in the Unity Environment.
**Arguments**:
- `key`: The string identifier of the property.
- `value`: The float value of the property.
<a name="mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.get_property"></a>
#### get\_property
```python
| get_property(key: str) -> Optional[float]
```
Gets a property in the Unity Environment. If the property was not
found, will return None.
**Arguments**:
- `key`: The string identifier of the property.
**Returns**:
The float value of the property or None.
<a name="mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.list_properties"></a>
#### list\_properties
```python
| list_properties() -> List[str]
```
Returns a list of all the string identifiers of the properties
currently present in the Unity Environment.
<a name="mlagents_envs.side_channel.float_properties_channel.FloatPropertiesChannel.get_property_dict_copy"></a>
#### get\_property\_dict\_copy
```python
| get_property_dict_copy() -> Dict[str, float]
```
Returns a copy of the float properties.
**Returns**:
<a name="mlagents_envs.side_channel.environment_parameters_channel"></a>
# mlagents\_envs.side\_channel.environment\_parameters\_channel
<a name="mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel"></a>
## EnvironmentParametersChannel Objects
```python
class EnvironmentParametersChannel(SideChannel)
```
This is the SideChannel for sending environment parameters to Unity.
You can send parameters to an environment with the command
set_float_parameter.
<a name="mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_float_parameter"></a>
#### set\_float\_parameter
```python
| set_float_parameter(key: str, value: float) -> None
```
Sets a float environment parameter in the Unity Environment.
**Arguments**:
- `key`: The string identifier of the parameter.
- `value`: The float value of the parameter.
<a name="mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_uniform_sampler_parameters"></a>
#### set\_uniform\_sampler\_parameters
```python
| set_uniform_sampler_parameters(key: str, min_value: float, max_value: float, seed: int) -> None
```
Sets a uniform environment parameter sampler.
**Arguments**:
- `key`: The string identifier of the parameter.
- `min_value`: The minimum of the sampling distribution.
- `max_value`: The maximum of the sampling distribution.
- `seed`: The random seed to initialize the sampler.
<a name="mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_gaussian_sampler_parameters"></a>
#### set\_gaussian\_sampler\_parameters
```python
| set_gaussian_sampler_parameters(key: str, mean: float, st_dev: float, seed: int) -> None
```
Sets a gaussian environment parameter sampler.
**Arguments**:
- `key`: The string identifier of the parameter.
- `mean`: The mean of the sampling distribution.
- `st_dev`: The standard deviation of the sampling distribution.
- `seed`: The random seed to initialize the sampler.
<a name="mlagents_envs.side_channel.environment_parameters_channel.EnvironmentParametersChannel.set_multirangeuniform_sampler_parameters"></a>
#### set\_multirangeuniform\_sampler\_parameters
```python
| set_multirangeuniform_sampler_parameters(key: str, intervals: List[Tuple[float, float]], seed: int) -> None
```
Sets a multirangeuniform environment parameter sampler.
**Arguments**:
- `key`: The string identifier of the parameter.
- `intervals`: The lists of min and max that define each uniform distribution.
- `seed`: The random seed to initialize the sampler.
<a name="mlagents_envs.side_channel.side_channel"></a>
# mlagents\_envs.side\_channel.side\_channel
<a name="mlagents_envs.side_channel.side_channel.SideChannel"></a>
## SideChannel Objects
```python
class SideChannel(ABC)
```
The side channel just get access to a bytes buffer that will be shared
between C# and Python. For example, We will create a specific side channel
for properties that will be a list of string (fixed size) to float number,
that can be modified by both C# and Python. All side channels are passed
to the Env object at construction.
<a name="mlagents_envs.side_channel.side_channel.SideChannel.queue_message_to_send"></a>
#### queue\_message\_to\_send
```python
| queue_message_to_send(msg: OutgoingMessage) -> None
```
Queues a message to be sent by the environment at the next call to
step.
<a name="mlagents_envs.side_channel.side_channel.SideChannel.on_message_received"></a>
#### on\_message\_received
```python
| @abstractmethod
| on_message_received(msg: IncomingMessage) -> None
```
Is called by the environment to the side channel. Can be called
multiple times per step if multiple messages are meant for that
SideChannel.
<a name="mlagents_envs.side_channel.side_channel.SideChannel.channel_id"></a>
#### channel\_id
```python
| @property
| channel_id() -> uuid.UUID
```
**Returns**:
The type of side channel used. Will influence how the data is
processed in the environment.
|