File size: 12,077 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
### Step 1: Write your custom trainer class
Before you start writing your code, make sure to use your favorite environment management tool(e.g. `venv` or `conda`) to create and activate a Python virtual environment. The following command uses `conda`, but other tools work similarly:
```shell
conda create -n trainer-env python=3.8.13
conda activate trainer-env
```

Users of the plug-in system are responsible for implementing the trainer class subject to the API standard. Let us follow an example by implementing a custom trainer named "YourCustomTrainer". You can either extend `OnPolicyTrainer` or `OffPolicyTrainer` classes depending on the training strategies you choose.

Please refer to the internal [PPO implementation](../ml-agents/mlagents/trainers/ppo/trainer.py) for a complete code example. We will not provide a workable code in the document. The purpose of the tutorial is to introduce you to the core components and interfaces of our plugin framework. We use code snippets and patterns to demonstrate the control and data flow.

Your custom trainers are responsible for collecting experiences and training the models. Your custom trainer class acts like a co-ordinator to the policy and optimizer. To start implementing methods in the class, create a policy class objects from method `create_policy`:


```python
def create_policy(
    self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec
) -> TorchPolicy:

    actor_cls: Union[Type[SimpleActor], Type[SharedActorCritic]] = SimpleActor
    actor_kwargs: Dict[str, Any] = {
        "conditional_sigma": False,
        "tanh_squash": False,
    }
    if self.shared_critic:
        reward_signal_configs = self.trainer_settings.reward_signals
        reward_signal_names = [
            key.value for key, _ in reward_signal_configs.items()
        ]
        actor_cls = SharedActorCritic
        actor_kwargs.update({"stream_names": reward_signal_names})

    policy = TorchPolicy(
        self.seed,
        behavior_spec,
        self.trainer_settings.network_settings,
        actor_cls,
        actor_kwargs,
    )
    return policy

```

Depending on whether you use shared or separate network architecture for your policy, we provide `SimpleActor` and `SharedActorCritic` from `mlagents.trainers.torch_entities.networks` that you can choose from. In our example above, we use a `SimpleActor`.

Next, create an optimizer class object from `create_optimizer` method and connect it to the policy object you created above:


```python
def create_optimizer(self) -> TorchOptimizer:
    return TorchPPOOptimizer(  # type: ignore
        cast(TorchPolicy, self.policy), self.trainer_settings  # type: ignore
    )  # type: ignore

```

There are a couple of abstract methods(`_process_trajectory` and `_update_policy`) inherited from `RLTrainer` that you need to implement in your custom trainer class. `_process_trajectory` takes a trajectory and processes it, putting it into the update buffer. Processing involves calculating value and advantage targets for the model updating step. Given input `trajectory: Trajectory`, users are responsible for processing the data in the trajectory and append `agent_buffer_trajectory` to the back of the update buffer by calling `self._append_to_update_buffer(agent_buffer_trajectory)`, whose output will be used in updating the model in `optimizer` class.

A typical `_process_trajectory` function(incomplete) will convert a trajectory object to an agent buffer then get all value estimates from the trajectory by calling `self.optimizer.get_trajectory_value_estimates`. From the returned dictionary of value estimates we extract reward signals keyed by their names:

```python
def _process_trajectory(self, trajectory: Trajectory) -> None:
    super()._process_trajectory(trajectory)
    agent_id = trajectory.agent_id  # All the agents should have the same ID

    agent_buffer_trajectory = trajectory.to_agentbuffer()

    # Get all value estimates
    (
        value_estimates,
        value_next,
        value_memories,
    ) =  self.optimizer.get_trajectory_value_estimates(
        agent_buffer_trajectory,
        trajectory.next_obs,
        trajectory.done_reached and not trajectory.interrupted,
    )

    for name, v in value_estimates.items():
        agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend(
            v
        )
        self._stats_reporter.add_stat(
            f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate",
            np.mean(v),
        )

    # Evaluate all reward functions
    self.collected_rewards["environment"][agent_id] += np.sum(
        agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS]
    )
    for name, reward_signal in self.optimizer.reward_signals.items():
        evaluate_result = (
            reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength
        )
        agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend(
            evaluate_result
        )
        # Report the reward signals
        self.collected_rewards[name][agent_id] += np.sum(evaluate_result)

    self._append_to_update_buffer(agent_buffer_trajectory)

```

A trajectory will be a list of dictionaries of strings mapped to `Anything`. When calling `forward` on a policy, the argument will include an “experience” dictionary from the last step. The `forward` method will generate an action and the next “experience” dictionary. Examples of fields in the “experience” dictionary include observation, action, reward, done status, group_reward, LSTM memory state, etc.



### Step 2: implement your custom optimizer for the trainer.
We will show you an example we implemented - `class TorchPPOOptimizer(TorchOptimizer)`, which takes a Policy and a Dict of trainer parameters and creates an Optimizer that connects to the policy. Your optimizer should include a value estimator and a loss function in the `update` method.

Before writing your optimizer class, first define setting class `class PPOSettings(OnPolicyHyperparamSettings)` for your custom optimizer:



```python
class PPOSettings(OnPolicyHyperparamSettings):
    beta: float = 5.0e-3
    epsilon: float = 0.2
    lambd: float = 0.95
    num_epoch: int = 3
    shared_critic: bool = False
    learning_rate_schedule: ScheduleType = ScheduleType.LINEAR
    beta_schedule: ScheduleType = ScheduleType.LINEAR
    epsilon_schedule: ScheduleType = ScheduleType.LINEAR

```

You should implement `update` function following interface:


```python
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:

```

In which losses and other metrics are calculated from an `AgentBuffer` that is generated from your trainer class, depending on which model you choose to implement the loss functions will be different. In our case we calculate value loss from critic and trust region policy loss. A typical pattern(incomplete) of the calculations will look like the following:


```python
run_out = self.policy.actor.get_stats(
    current_obs,
    actions,
    masks=act_masks,
    memories=memories,
    sequence_length=self.policy.sequence_length,
)

log_probs = run_out["log_probs"]
entropy = run_out["entropy"]

values, _ = self.critic.critic_pass(
    current_obs,
    memories=value_memories,
    sequence_length=self.policy.sequence_length,
)
policy_loss = ModelUtils.trust_region_policy_loss(
    ModelUtils.list_to_tensor(batch[BufferKey.ADVANTAGES]),
    log_probs,
    old_log_probs,
    loss_masks,
    decay_eps,
)
loss = (
    policy_loss
    + 0.5 * value_loss
    - decay_bet * ModelUtils.masked_mean(entropy, loss_masks)
)

```

Finally update the model and return the a dictionary including calculated losses and updated decay learning rate:


```python
ModelUtils.update_learning_rate(self.optimizer, decay_lr)
self.optimizer.zero_grad()
loss.backward()

self.optimizer.step()
update_stats = {
    "Losses/Policy Loss": torch.abs(policy_loss).item(),
    "Losses/Value Loss": value_loss.item(),
    "Policy/Learning Rate": decay_lr,
    "Policy/Epsilon": decay_eps,
    "Policy/Beta": decay_bet,
}

```

### Step 3: Integrate your custom trainer into the plugin system

By integrating a custom trainer into the plugin system, a user can use their published packages which have their implementations. To do that, you need to add a setup.py file. In the call to setup(), you'll need to add to the entry_points dictionary for each plugin interface that you implement. The form of this is {entry point name}={plugin module}:{plugin function}. For example:



```python
entry_points={
        ML_AGENTS_TRAINER_TYPE: [
            "your_trainer_type=your_package.your_custom_trainer:get_type_and_setting"
        ]
    },
```

Some key elements in the code:

```
ML_AGENTS_TRAINER_TYPE: a string constant for trainer type
your_trainer_type: name your trainer type, used in configuration file
your_package: your pip installable package containing custom trainer implementation
```

Also define `get_type_and_setting` method in `YourCustomTrainer` class:


```python
def get_type_and_setting():
    return {YourCustomTrainer.get_trainer_name(): YourCustomTrainer}, {
        YourCustomTrainer.get_trainer_name(): YourCustomSetting
    }

```

Finally, specify trainer type in the config file:


```python
behaviors:
  3DBall:
    trainer_type: your_trainer_type
...
```

### Step 4: Install your custom trainer and run training:
Before installing your custom trainer package, make sure you have `ml-agents-env` and `ml-agents` installed

```shell
pip3 install -e ./ml-agents-envs && pip3 install -e ./ml-agents
```

Install your cutom trainer package(if your package is pip installable):
```shell
pip3 install your_custom_package
```
Or follow our internal implementations:
```shell
pip3 install -e ./ml-agents-trainer-plugin
```

Following the previous installations your package is added as an entrypoint and you can use a config file with new
trainers:
```shell
mlagents-learn ml-agents-trainer-plugin/mlagents_trainer_plugin/a2c/a2c_3DBall.yaml --run-id <run-id-name>
--env <env-executable>
```

### Validate your implementations:
Create a clean Python environment with Python 3.8+ and activate it before you start, if you haven't done so already:
```shell
conda create -n trainer-env python=3.8.13
conda activate trainer-env
```

Make sure you follow previous steps and install all required packages. We are testing internal implementations in this tutorial, but ML-Agents users can run similar validations once they have their own implementations installed:
```shell
pip3 install -e ./ml-agents-envs && pip3 install -e ./ml-agents
pip3 install -e ./ml-agents-trainer-plugin
```
Once your package is added as an `entrypoint`, you can add to the config file the new trainer type. Check if trainer type is specified in the config file `a2c_3DBall.yaml`:
```
trainer_type: a2c
```

Test if custom trainer package is installed by running:
```shell
mlagents-learn ml-agents-trainer-plugin/mlagents_trainer_plugin/a2c/a2c_3DBall.yaml --run-id test-trainer
```

You can also list all trainers installed in the registry. Type `python` in your shell to open a REPL session. Run the python code below, you should be able to see all trainer types currently installed:
```python
>>> import pkg_resources
>>> for entry in pkg_resources.iter_entry_points('mlagents.trainer_type'):
...     print(entry)
...
default = mlagents.plugins.trainer_type:get_default_trainer_types
a2c = mlagents_trainer_plugin.a2c.a2c_trainer:get_type_and_setting
dqn = mlagents_trainer_plugin.dqn.dqn_trainer:get_type_and_setting
```

If it is properly installed, you will see Unity logo and message indicating training will start:
```
[INFO] Listening on port 5004. Start training by pressing the Play button in the Unity Editor.
```

If you see the following error message, it could be due to trainer type is wrong or the trainer type specified is not installed:
```shell
mlagents.trainers.exception.TrainerConfigError: Invalid trainer type a2c was found
```