File size: 6,100 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from typing import cast

import numpy as np
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.buffer import BufferKey
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.trainer.off_policy_trainer import OffPolicyTrainer
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.trajectory import Trajectory, ObsUtil
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
from mlagents_envs.base_env import BehaviorSpec
from mlagents.trainers.settings import TrainerSettings
from .dqn_optimizer import DQNOptimizer, DQNSettings, QNetwork

logger = get_logger(__name__)
TRAINER_NAME = "dqn"


class DQNTrainer(OffPolicyTrainer):
    """The DQNTrainer is an implementation of"""

    def __init__(
        self,
        behavior_name: str,
        reward_buff_cap: int,
        trainer_settings: TrainerSettings,
        training: bool,
        load: bool,
        seed: int,
        artifact_path: str,
    ):
        """
        Responsible for collecting experiences and training SAC model.
        :param behavior_name: The name of the behavior associated with trainer config
        :param reward_buff_cap: Max reward history to track in the reward buffer
        :param trainer_settings: The parameters for the trainer.
        :param training: Whether the trainer is set for training.
        :param load: Whether the model should be loaded.
        :param seed: The seed the model will be initialized with
        :param artifact_path: The directory within which to store artifacts from this trainer.
        """
        super().__init__(
            behavior_name,
            reward_buff_cap,
            trainer_settings,
            training,
            load,
            seed,
            artifact_path,
        )
        self.policy: TorchPolicy = None  # type: ignore
        self.optimizer: DQNOptimizer = None  # type: ignore

    def _process_trajectory(self, trajectory: Trajectory) -> None:
        """
        Takes a trajectory and processes it, putting it into the replay buffer.
        """
        super()._process_trajectory(trajectory)
        last_step = trajectory.steps[-1]
        agent_id = trajectory.agent_id  # All the agents should have the same ID

        agent_buffer_trajectory = trajectory.to_agentbuffer()
        # Check if we used group rewards, warn if so.
        self._warn_if_group_reward(agent_buffer_trajectory)

        # Update the normalization
        if self.is_training:
            self.policy.actor.update_normalization(agent_buffer_trajectory)
            self.optimizer.critic.update_normalization(agent_buffer_trajectory)

        # Evaluate all reward functions for reporting purposes
        self.collected_rewards["environment"][agent_id] += np.sum(
            agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS]
        )
        for name, reward_signal in self.optimizer.reward_signals.items():
            evaluate_result = (
                reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength
            )

            # Report the reward signals
            self.collected_rewards[name][agent_id] += np.sum(evaluate_result)

        # Get all value estimates for reporting purposes
        (
            value_estimates,
            _,
            value_memories,
        ) = self.optimizer.get_trajectory_value_estimates(
            agent_buffer_trajectory, trajectory.next_obs, trajectory.done_reached
        )
        if value_memories is not None:
            agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories)

        for name, v in value_estimates.items():
            self._stats_reporter.add_stat(
                f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value",
                np.mean(v),
            )

        # Bootstrap using the last step rather than the bootstrap step if max step is reached.
        # Set last element to duplicate obs and remove dones.
        if last_step.interrupted:
            last_step_obs = last_step.obs
            for i, obs in enumerate(last_step_obs):
                agent_buffer_trajectory[ObsUtil.get_name_at_next(i)][-1] = obs
            agent_buffer_trajectory[BufferKey.DONE][-1] = False

        self._append_to_update_buffer(agent_buffer_trajectory)

        if trajectory.done_reached:
            self._update_end_episode_stats(agent_id, self.optimizer)

    def create_optimizer(self) -> TorchOptimizer:
        """
        Creates an Optimizer object
        """
        return DQNOptimizer(  # type: ignore
            cast(TorchPolicy, self.policy), self.trainer_settings  # type: ignore
        )  # type: ignore

    def create_policy(
        self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec
    ) -> TorchPolicy:
        """
        Creates a policy with a PyTorch backend and give DQN hyperparameters
        :param parsed_behavior_id:
        :param behavior_spec: specifications for policy construction
        :return policy
        """
        # initialize online Q-network which works as actor
        exploration_initial_eps = cast(
            DQNSettings, self.trainer_settings.hyperparameters
        ).exploration_initial_eps
        actor_kwargs = {
            "exploration_initial_eps": exploration_initial_eps,
            "stream_names": [
                signal.value for signal in self.trainer_settings.reward_signals.keys()
            ],
        }
        policy = TorchPolicy(
            self.seed,
            behavior_spec,
            self.trainer_settings.network_settings,
            actor_cls=QNetwork,
            actor_kwargs=actor_kwargs,
        )
        self.maybe_load_replay_buffer()
        return policy

    @staticmethod
    def get_settings_type():
        return DQNSettings

    @staticmethod
    def get_trainer_name() -> str:
        return TRAINER_NAME


def get_type_and_setting():
    return {DQNTrainer.get_trainer_name(): DQNTrainer}, {
        DQNTrainer.get_trainer_name(): DQNTrainer.get_settings_type()
    }