File size: 9,420 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
from typing import Dict, Optional, Tuple, List
from mlagents.torch_utils import torch
import numpy as np
from collections import defaultdict
from mlagents.trainers.buffer import AgentBuffer, AgentBufferField
from mlagents.trainers.trajectory import ObsUtil
from mlagents.trainers.torch_entities.components.bc.module import BCModule
from mlagents.trainers.torch_entities.components.reward_providers import (
create_reward_provider,
)
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.optimizer import Optimizer
from mlagents.trainers.settings import (
TrainerSettings,
RewardSignalSettings,
RewardSignalType,
)
from mlagents.trainers.torch_entities.utils import ModelUtils
class TorchOptimizer(Optimizer):
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
super().__init__()
self.policy = policy
self.trainer_settings = trainer_settings
self.update_dict: Dict[str, torch.Tensor] = {}
self.value_heads: Dict[str, torch.Tensor] = {}
self.memory_in: torch.Tensor = None
self.memory_out: torch.Tensor = None
self.m_size: int = 0
self.global_step = torch.tensor(0)
self.bc_module: Optional[BCModule] = None
self.create_reward_signals(trainer_settings.reward_signals)
self.critic_memory_dict: Dict[str, torch.Tensor] = {}
if trainer_settings.behavioral_cloning is not None:
self.bc_module = BCModule(
self.policy,
trainer_settings.behavioral_cloning,
policy_learning_rate=trainer_settings.hyperparameters.learning_rate,
default_batch_size=trainer_settings.hyperparameters.batch_size,
default_num_epoch=3,
)
@property
def critic(self):
raise NotImplementedError
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
pass
def create_reward_signals(
self, reward_signal_configs: Dict[RewardSignalType, RewardSignalSettings]
) -> None:
"""
Create reward signals
:param reward_signal_configs: Reward signal config.
"""
for reward_signal, settings in reward_signal_configs.items():
# Name reward signals by string in case we have duplicates later
self.reward_signals[reward_signal.value] = create_reward_provider(
reward_signal, self.policy.behavior_spec, settings
)
def _evaluate_by_sequence(
self, tensor_obs: List[torch.Tensor], initial_memory: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], AgentBufferField, torch.Tensor]:
"""
Evaluate a trajectory sequence-by-sequence, assembling the result. This enables us to get the
intermediate memories for the critic.
:param tensor_obs: A List of tensors of shape (trajectory_len, <obs_dim>) that are the agent's
observations for this trajectory.
:param initial_memory: The memory that preceeds this trajectory. Of shape (1,1,<mem_size>), i.e.
what is returned as the output of a MemoryModules.
:return: A Tuple of the value estimates as a Dict of [name, tensor], an AgentBufferField of the initial
memories to be used during value function update, and the final memory at the end of the trajectory.
"""
num_experiences = tensor_obs[0].shape[0]
all_next_memories = AgentBufferField()
# When using LSTM, we need to divide the trajectory into sequences of equal length. Sometimes,
# that division isn't even, and we must pad the leftover sequence.
# When it is added to the buffer, the last sequence will be padded. So if seq_len = 3 and
# trajectory is of length 10, the last sequence is [obs,pad,pad] once it is added to the buffer.
# Compute the number of elements in this sequence that will end up being padded.
leftover_seq_len = num_experiences % self.policy.sequence_length
all_values: Dict[str, List[np.ndarray]] = defaultdict(list)
_mem = initial_memory
# Evaluate other trajectories, carrying over _mem after each
# trajectory
for seq_num in range(num_experiences // self.policy.sequence_length):
seq_obs = []
for _ in range(self.policy.sequence_length):
all_next_memories.append(ModelUtils.to_numpy(_mem.squeeze()))
start = seq_num * self.policy.sequence_length
end = (seq_num + 1) * self.policy.sequence_length
for _obs in tensor_obs:
seq_obs.append(_obs[start:end])
values, _mem = self.critic.critic_pass(
seq_obs, _mem, sequence_length=self.policy.sequence_length
)
for signal_name, _val in values.items():
all_values[signal_name].append(_val)
# Compute values for the potentially truncated last sequence. Note that this
# sequence isn't padded yet, but will be.
seq_obs = []
if leftover_seq_len > 0:
for _obs in tensor_obs:
last_seq_obs = _obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)
# For the last sequence, the initial memory should be the one at the
# end of this trajectory.
for _ in range(leftover_seq_len):
all_next_memories.append(ModelUtils.to_numpy(_mem.squeeze()))
last_values, _mem = self.critic.critic_pass(
seq_obs, _mem, sequence_length=leftover_seq_len
)
for signal_name, _val in last_values.items():
all_values[signal_name].append(_val)
# Create one tensor per reward signal
all_value_tensors = {
signal_name: torch.cat(value_list, dim=0)
for signal_name, value_list in all_values.items()
}
next_mem = _mem
return all_value_tensors, all_next_memories, next_mem
def update_reward_signals(self, batch: AgentBuffer) -> Dict[str, float]:
update_stats: Dict[str, float] = {}
for reward_provider in self.reward_signals.values():
update_stats.update(reward_provider.update(batch))
return update_stats
def get_trajectory_value_estimates(
self,
batch: AgentBuffer,
next_obs: List[np.ndarray],
done: bool,
agent_id: str = "",
) -> Tuple[Dict[str, np.ndarray], Dict[str, float], Optional[AgentBufferField]]:
"""
Get value estimates and memories for a trajectory, in batch form.
:param batch: An AgentBuffer that consists of a trajectory.
:param next_obs: the next observation (after the trajectory). Used for boostrapping
if this is not a termiinal trajectory.
:param done: Set true if this is a terminal trajectory.
:param agent_id: Agent ID of the agent that this trajectory belongs to.
:returns: A Tuple of the Value Estimates as a Dict of [name, np.ndarray(trajectory_len)],
the final value estimate as a Dict of [name, float], and optionally (if using memories)
an AgentBufferField of initial critic memories to be used during update.
"""
n_obs = len(self.policy.behavior_spec.observation_specs)
if agent_id in self.critic_memory_dict:
memory = self.critic_memory_dict[agent_id]
else:
memory = (
torch.zeros((1, 1, self.critic.memory_size))
if self.policy.use_recurrent
else None
)
# Convert to tensors
current_obs = [
ModelUtils.list_to_tensor(obs) for obs in ObsUtil.from_buffer(batch, n_obs)
]
next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]
next_obs = [obs.unsqueeze(0) for obs in next_obs]
# If we're using LSTM, we want to get all the intermediate memories.
all_next_memories: Optional[AgentBufferField] = None
# To prevent memory leak and improve performance, evaluate with no_grad.
with torch.no_grad():
if self.policy.use_recurrent:
(
value_estimates,
all_next_memories,
next_memory,
) = self._evaluate_by_sequence(current_obs, memory)
else:
value_estimates, next_memory = self.critic.critic_pass(
current_obs, memory, sequence_length=batch.num_experiences
)
# Store the memory for the next trajectory. This should NOT have a gradient.
self.critic_memory_dict[agent_id] = next_memory
next_value_estimate, _ = self.critic.critic_pass(
next_obs, next_memory, sequence_length=1
)
for name, estimate in value_estimates.items():
value_estimates[name] = ModelUtils.to_numpy(estimate)
next_value_estimate[name] = ModelUtils.to_numpy(next_value_estimate[name])
if done:
for k in next_value_estimate:
if not self.reward_signals[k].ignore_done:
next_value_estimate[k] = 0.0
if agent_id in self.critic_memory_dict:
self.critic_memory_dict.pop(agent_id)
return value_estimates, next_value_estimate, all_next_memories
|