File size: 37,672 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
import os.path
import warnings
import attr
import cattr
from typing import (
Dict,
Optional,
List,
Any,
DefaultDict,
Mapping,
Tuple,
Union,
ClassVar,
)
from enum import Enum
import collections
import argparse
import abc
import numpy as np
import math
import copy
from mlagents.trainers.cli_utils import StoreConfigFile, DetectDefault, parser
from mlagents.trainers.cli_utils import load_config
from mlagents.trainers.exception import TrainerConfigError, TrainerConfigWarning
from mlagents_envs import logging_util
from mlagents_envs.side_channel.environment_parameters_channel import (
EnvironmentParametersChannel,
)
from mlagents.plugins import all_trainer_settings, all_trainer_types
logger = logging_util.get_logger(__name__)
def check_and_structure(key: str, value: Any, class_type: type) -> Any:
attr_fields_dict = attr.fields_dict(class_type)
if key not in attr_fields_dict:
raise TrainerConfigError(
f"The option {key} was specified in your YAML file for {class_type.__name__}, but is invalid."
)
# Apply cattr structure to the values
return cattr.structure(value, attr_fields_dict[key].type)
def check_hyperparam_schedules(val: Dict, trainer_type: str) -> Dict:
# Check if beta and epsilon are set. If not, set to match learning rate schedule.
if trainer_type == "ppo" or trainer_type == "poca":
if "beta_schedule" not in val.keys() and "learning_rate_schedule" in val.keys():
val["beta_schedule"] = val["learning_rate_schedule"]
if (
"epsilon_schedule" not in val.keys()
and "learning_rate_schedule" in val.keys()
):
val["epsilon_schedule"] = val["learning_rate_schedule"]
return val
def strict_to_cls(d: Mapping, t: type) -> Any:
if not isinstance(d, Mapping):
raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.")
d_copy: Dict[str, Any] = {}
d_copy.update(d)
for key, val in d_copy.items():
d_copy[key] = check_and_structure(key, val, t)
return t(**d_copy)
def defaultdict_to_dict(d: DefaultDict) -> Dict:
return {key: cattr.unstructure(val) for key, val in d.items()}
def deep_update_dict(d: Dict, update_d: Mapping) -> None:
"""
Similar to dict.update(), but works for nested dicts of dicts as well.
"""
for key, val in update_d.items():
if key in d and isinstance(d[key], Mapping) and isinstance(val, Mapping):
deep_update_dict(d[key], val)
else:
d[key] = val
class SerializationSettings:
convert_to_onnx = True
onnx_opset = 9
@attr.s(auto_attribs=True)
class ExportableSettings:
def as_dict(self):
return cattr.unstructure(self)
class EncoderType(Enum):
FULLY_CONNECTED = "fully_connected"
MATCH3 = "match3"
SIMPLE = "simple"
NATURE_CNN = "nature_cnn"
RESNET = "resnet"
class ScheduleType(Enum):
CONSTANT = "constant"
LINEAR = "linear"
# TODO add support for lesson based scheduling
# LESSON = "lesson"
class ConditioningType(Enum):
HYPER = "hyper"
NONE = "none"
@attr.s(auto_attribs=True)
class NetworkSettings:
@attr.s
class MemorySettings:
sequence_length: int = attr.ib(default=64)
memory_size: int = attr.ib(default=128)
@memory_size.validator
def _check_valid_memory_size(self, attribute, value):
if value <= 0:
raise TrainerConfigError(
"When using a recurrent network, memory size must be greater than 0."
)
elif value % 2 != 0:
raise TrainerConfigError(
"When using a recurrent network, memory size must be divisible by 2."
)
normalize: bool = False
hidden_units: int = 128
num_layers: int = 2
vis_encode_type: EncoderType = EncoderType.SIMPLE
memory: Optional[MemorySettings] = None
goal_conditioning_type: ConditioningType = ConditioningType.HYPER
deterministic: bool = parser.get_default("deterministic")
@attr.s(auto_attribs=True)
class BehavioralCloningSettings:
demo_path: str
steps: int = 0
strength: float = 1.0
samples_per_update: int = 0
# Setting either of these to None will allow the Optimizer
# to decide these parameters, based on Trainer hyperparams
num_epoch: Optional[int] = None
batch_size: Optional[int] = None
@attr.s(auto_attribs=True)
class HyperparamSettings:
batch_size: int = 1024
buffer_size: int = 10240
learning_rate: float = 3.0e-4
learning_rate_schedule: ScheduleType = ScheduleType.CONSTANT
@attr.s(auto_attribs=True)
class OnPolicyHyperparamSettings(HyperparamSettings):
num_epoch: int = 3
@attr.s(auto_attribs=True)
class OffPolicyHyperparamSettings(HyperparamSettings):
batch_size: int = 128
buffer_size: int = 50000
buffer_init_steps: int = 0
steps_per_update: float = 1
save_replay_buffer: bool = False
reward_signal_steps_per_update: float = 4
# INTRINSIC REWARD SIGNALS #############################################################
class RewardSignalType(Enum):
EXTRINSIC: str = "extrinsic"
GAIL: str = "gail"
CURIOSITY: str = "curiosity"
RND: str = "rnd"
def to_settings(self) -> type:
_mapping = {
RewardSignalType.EXTRINSIC: RewardSignalSettings,
RewardSignalType.GAIL: GAILSettings,
RewardSignalType.CURIOSITY: CuriositySettings,
RewardSignalType.RND: RNDSettings,
}
return _mapping[self]
@attr.s(auto_attribs=True)
class RewardSignalSettings:
gamma: float = 0.99
strength: float = 1.0
network_settings: NetworkSettings = attr.ib(factory=NetworkSettings)
@staticmethod
def structure(d: Mapping, t: type) -> Any:
"""
Helper method to structure a Dict of RewardSignalSettings class. Meant to be registered with
cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle
the special Enum selection of RewardSignalSettings classes.
"""
if not isinstance(d, Mapping):
raise TrainerConfigError(f"Unsupported reward signal configuration {d}.")
d_final: Dict[RewardSignalType, RewardSignalSettings] = {}
for key, val in d.items():
enum_key = RewardSignalType(key)
t = enum_key.to_settings()
d_final[enum_key] = strict_to_cls(val, t)
# Checks to see if user specifying deprecated encoding_size for RewardSignals.
# If network_settings is not specified, this updates the default hidden_units
# to the value of encoding size. If specified, this ignores encoding size and
# uses network_settings values.
if "encoding_size" in val:
logger.warning(
"'encoding_size' was deprecated for RewardSignals. Please use network_settings."
)
# If network settings was not specified, use the encoding size. Otherwise, use hidden_units
if "network_settings" not in val:
d_final[enum_key].network_settings.hidden_units = val[
"encoding_size"
]
return d_final
@attr.s(auto_attribs=True)
class GAILSettings(RewardSignalSettings):
learning_rate: float = 3e-4
encoding_size: Optional[int] = None
use_actions: bool = False
use_vail: bool = False
demo_path: str = attr.ib(kw_only=True)
@attr.s(auto_attribs=True)
class CuriositySettings(RewardSignalSettings):
learning_rate: float = 3e-4
encoding_size: Optional[int] = None
@attr.s(auto_attribs=True)
class RNDSettings(RewardSignalSettings):
learning_rate: float = 1e-4
encoding_size: Optional[int] = None
# SAMPLERS #############################################################################
class ParameterRandomizationType(Enum):
UNIFORM: str = "uniform"
GAUSSIAN: str = "gaussian"
MULTIRANGEUNIFORM: str = "multirangeuniform"
CONSTANT: str = "constant"
def to_settings(self) -> type:
_mapping = {
ParameterRandomizationType.UNIFORM: UniformSettings,
ParameterRandomizationType.GAUSSIAN: GaussianSettings,
ParameterRandomizationType.MULTIRANGEUNIFORM: MultiRangeUniformSettings,
ParameterRandomizationType.CONSTANT: ConstantSettings
# Constant type is handled if a float is provided instead of a config
}
return _mapping[self]
@attr.s(auto_attribs=True)
class ParameterRandomizationSettings(abc.ABC):
seed: int = parser.get_default("seed")
def __str__(self) -> str:
"""
Helper method to output sampler stats to console.
"""
raise TrainerConfigError(f"__str__ not implemented for type {self.__class__}.")
@staticmethod
def structure(
d: Union[Mapping, float], t: type
) -> "ParameterRandomizationSettings":
"""
Helper method to a ParameterRandomizationSettings class. Meant to be registered with
cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle
the special Enum selection of ParameterRandomizationSettings classes.
"""
if isinstance(d, (float, int)):
return ConstantSettings(value=d)
if not isinstance(d, Mapping):
raise TrainerConfigError(
f"Unsupported parameter randomization configuration {d}."
)
if "sampler_type" not in d:
raise TrainerConfigError(
f"Sampler configuration does not contain sampler_type : {d}."
)
if "sampler_parameters" not in d:
raise TrainerConfigError(
f"Sampler configuration does not contain sampler_parameters : {d}."
)
enum_key = ParameterRandomizationType(d["sampler_type"])
t = enum_key.to_settings()
return strict_to_cls(d["sampler_parameters"], t)
@staticmethod
def unstructure(d: "ParameterRandomizationSettings") -> Mapping:
"""
Helper method to a ParameterRandomizationSettings class. Meant to be registered with
cattr.register_unstructure_hook() and called with cattr.unstructure().
"""
_reversed_mapping = {
UniformSettings: ParameterRandomizationType.UNIFORM,
GaussianSettings: ParameterRandomizationType.GAUSSIAN,
MultiRangeUniformSettings: ParameterRandomizationType.MULTIRANGEUNIFORM,
ConstantSettings: ParameterRandomizationType.CONSTANT,
}
sampler_type: Optional[str] = None
for t, name in _reversed_mapping.items():
if isinstance(d, t):
sampler_type = name.value
sampler_parameters = attr.asdict(d)
return {"sampler_type": sampler_type, "sampler_parameters": sampler_parameters}
@abc.abstractmethod
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
"""
Helper method to send sampler settings over EnvironmentParametersChannel
Calls the appropriate sampler type set method.
:param key: environment parameter to be sampled
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
"""
pass
@attr.s(auto_attribs=True)
class ConstantSettings(ParameterRandomizationSettings):
value: float = 0.0
def __str__(self) -> str:
"""
Helper method to output sampler stats to console.
"""
return f"Float: value={self.value}"
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
"""
Helper method to send sampler settings over EnvironmentParametersChannel
Calls the constant sampler type set method.
:param key: environment parameter to be sampled
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
"""
env_channel.set_float_parameter(key, self.value)
@attr.s(auto_attribs=True)
class UniformSettings(ParameterRandomizationSettings):
min_value: float = attr.ib()
max_value: float = 1.0
def __str__(self) -> str:
"""
Helper method to output sampler stats to console.
"""
return f"Uniform sampler: min={self.min_value}, max={self.max_value}"
@min_value.default
def _min_value_default(self):
return 0.0
@min_value.validator
def _check_min_value(self, attribute, value):
if self.min_value > self.max_value:
raise TrainerConfigError(
"Minimum value is greater than maximum value in uniform sampler."
)
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
"""
Helper method to send sampler settings over EnvironmentParametersChannel
Calls the uniform sampler type set method.
:param key: environment parameter to be sampled
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
"""
env_channel.set_uniform_sampler_parameters(
key, self.min_value, self.max_value, self.seed
)
@attr.s(auto_attribs=True)
class GaussianSettings(ParameterRandomizationSettings):
mean: float = 1.0
st_dev: float = 1.0
def __str__(self) -> str:
"""
Helper method to output sampler stats to console.
"""
return f"Gaussian sampler: mean={self.mean}, stddev={self.st_dev}"
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
"""
Helper method to send sampler settings over EnvironmentParametersChannel
Calls the gaussian sampler type set method.
:param key: environment parameter to be sampled
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
"""
env_channel.set_gaussian_sampler_parameters(
key, self.mean, self.st_dev, self.seed
)
@attr.s(auto_attribs=True)
class MultiRangeUniformSettings(ParameterRandomizationSettings):
intervals: List[Tuple[float, float]] = attr.ib()
def __str__(self) -> str:
"""
Helper method to output sampler stats to console.
"""
return f"MultiRangeUniform sampler: intervals={self.intervals}"
@intervals.default
def _intervals_default(self):
return [[0.0, 1.0]]
@intervals.validator
def _check_intervals(self, attribute, value):
for interval in self.intervals:
if len(interval) != 2:
raise TrainerConfigError(
f"The sampling interval {interval} must contain exactly two values."
)
min_value, max_value = interval
if min_value > max_value:
raise TrainerConfigError(
f"Minimum value is greater than maximum value in interval {interval}."
)
def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None:
"""
Helper method to send sampler settings over EnvironmentParametersChannel
Calls the multirangeuniform sampler type set method.
:param key: environment parameter to be sampled
:param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment
"""
env_channel.set_multirangeuniform_sampler_parameters(
key, self.intervals, self.seed
)
# ENVIRONMENT PARAMETERS ###############################################################
@attr.s(auto_attribs=True)
class CompletionCriteriaSettings:
"""
CompletionCriteriaSettings contains the information needed to figure out if the next
lesson must start.
"""
class MeasureType(Enum):
PROGRESS: str = "progress"
REWARD: str = "reward"
behavior: str
measure: MeasureType = attr.ib(default=MeasureType.REWARD)
min_lesson_length: int = 0
signal_smoothing: bool = True
threshold: float = attr.ib(default=0.0)
require_reset: bool = False
@threshold.validator
def _check_threshold_value(self, attribute, value):
"""
Verify that the threshold has a value between 0 and 1 when the measure is
PROGRESS
"""
if self.measure == self.MeasureType.PROGRESS:
if self.threshold > 1.0:
raise TrainerConfigError(
"Threshold for next lesson cannot be greater than 1 when the measure is progress."
)
if self.threshold < 0.0:
raise TrainerConfigError(
"Threshold for next lesson cannot be negative when the measure is progress."
)
def need_increment(
self, progress: float, reward_buffer: List[float], smoothing: float
) -> Tuple[bool, float]:
"""
Given measures, this method returns a boolean indicating if the lesson
needs to change now, and a float corresponding to the new smoothed value.
"""
# Is the min number of episodes reached
if len(reward_buffer) < self.min_lesson_length:
return False, smoothing
if self.measure == CompletionCriteriaSettings.MeasureType.PROGRESS:
if progress > self.threshold:
return True, smoothing
if self.measure == CompletionCriteriaSettings.MeasureType.REWARD:
if len(reward_buffer) < 1:
return False, smoothing
measure = np.mean(reward_buffer)
if math.isnan(measure):
return False, smoothing
if self.signal_smoothing:
measure = 0.25 * smoothing + 0.75 * measure
smoothing = measure
if measure > self.threshold:
return True, smoothing
return False, smoothing
@attr.s(auto_attribs=True)
class Lesson:
"""
Gathers the data of one lesson for one environment parameter including its name,
the condition that must be fullfiled for the lesson to be completed and a sampler
for the environment parameter. If the completion_criteria is None, then this is
the last lesson in the curriculum.
"""
value: ParameterRandomizationSettings
name: str
completion_criteria: Optional[CompletionCriteriaSettings] = attr.ib(default=None)
@attr.s(auto_attribs=True)
class EnvironmentParameterSettings:
"""
EnvironmentParameterSettings is an ordered list of lessons for one environment
parameter.
"""
curriculum: List[Lesson]
@staticmethod
def _check_lesson_chain(lessons, parameter_name):
"""
Ensures that when using curriculum, all non-terminal lessons have a valid
CompletionCriteria, and that the terminal lesson does not contain a CompletionCriteria.
"""
num_lessons = len(lessons)
for index, lesson in enumerate(lessons):
if index < num_lessons - 1 and lesson.completion_criteria is None:
raise TrainerConfigError(
f"A non-terminal lesson does not have a completion_criteria for {parameter_name}."
)
if index == num_lessons - 1 and lesson.completion_criteria is not None:
warnings.warn(
f"Your final lesson definition contains completion_criteria for {parameter_name}."
f"It will be ignored.",
TrainerConfigWarning,
)
@staticmethod
def structure(d: Mapping, t: type) -> Dict[str, "EnvironmentParameterSettings"]:
"""
Helper method to structure a Dict of EnvironmentParameterSettings class. Meant
to be registered with cattr.register_structure_hook() and called with
cattr.structure().
"""
if not isinstance(d, Mapping):
raise TrainerConfigError(
f"Unsupported parameter environment parameter settings {d}."
)
d_final: Dict[str, EnvironmentParameterSettings] = {}
for environment_parameter, environment_parameter_config in d.items():
if (
isinstance(environment_parameter_config, Mapping)
and "curriculum" in environment_parameter_config
):
d_final[environment_parameter] = strict_to_cls(
environment_parameter_config, EnvironmentParameterSettings
)
EnvironmentParameterSettings._check_lesson_chain(
d_final[environment_parameter].curriculum, environment_parameter
)
else:
sampler = ParameterRandomizationSettings.structure(
environment_parameter_config, ParameterRandomizationSettings
)
d_final[environment_parameter] = EnvironmentParameterSettings(
curriculum=[
Lesson(
completion_criteria=None,
value=sampler,
name=environment_parameter,
)
]
)
return d_final
# TRAINERS #############################################################################
@attr.s(auto_attribs=True)
class SelfPlaySettings:
save_steps: int = 20000
team_change: int = attr.ib()
@team_change.default
def _team_change_default(self):
# Assign team_change to about 4x save_steps
return self.save_steps * 5
swap_steps: int = 2000
window: int = 10
play_against_latest_model_ratio: float = 0.5
initial_elo: float = 1200.0
@attr.s(auto_attribs=True)
class TrainerSettings(ExportableSettings):
default_override: ClassVar[Optional["TrainerSettings"]] = None
trainer_type: str = "ppo"
hyperparameters: HyperparamSettings = attr.ib()
checkpoint_interval: int = attr.ib()
@hyperparameters.default
def _set_default_hyperparameters(self):
return all_trainer_settings[self.trainer_type]()
@checkpoint_interval.default
def _set_default_checkpoint_interval(self):
return 500000
network_settings: NetworkSettings = attr.ib(factory=NetworkSettings)
reward_signals: Dict[RewardSignalType, RewardSignalSettings] = attr.ib(
factory=lambda: {RewardSignalType.EXTRINSIC: RewardSignalSettings()}
)
init_path: Optional[str] = None
keep_checkpoints: int = 5
even_checkpoints: bool = False
max_steps: int = 500000
time_horizon: int = 64
summary_freq: int = 50000
threaded: bool = False
self_play: Optional[SelfPlaySettings] = None
behavioral_cloning: Optional[BehavioralCloningSettings] = None
cattr.register_structure_hook_func(
lambda t: t == Dict[RewardSignalType, RewardSignalSettings],
RewardSignalSettings.structure,
)
@network_settings.validator
def _check_batch_size_seq_length(self, attribute, value):
if self.network_settings.memory is not None:
if (
self.network_settings.memory.sequence_length
> self.hyperparameters.batch_size
):
raise TrainerConfigError(
"When using memory, sequence length must be less than or equal to batch size. "
)
@checkpoint_interval.validator
def _set_checkpoint_interval(self, attribute, value):
if self.even_checkpoints:
self.checkpoint_interval = int(self.max_steps / self.keep_checkpoints)
@staticmethod
def dict_to_trainerdict(d: Dict, t: type) -> "TrainerSettings.DefaultTrainerDict":
return TrainerSettings.DefaultTrainerDict(
cattr.structure(d, Dict[str, TrainerSettings])
)
@staticmethod
def structure(d: Mapping, t: type) -> Any:
"""
Helper method to structure a TrainerSettings class. Meant to be registered with
cattr.register_structure_hook() and called with cattr.structure().
"""
if not isinstance(d, Mapping):
raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.")
d_copy: Dict[str, Any] = {}
# Check if a default_settings was specified. If so, used those as the default
# rather than an empty dict.
if TrainerSettings.default_override is not None:
d_copy.update(cattr.unstructure(TrainerSettings.default_override))
deep_update_dict(d_copy, d)
if "framework" in d_copy:
logger.warning("Framework option was deprecated but was specified")
d_copy.pop("framework", None)
for key, val in d_copy.items():
if attr.has(type(val)):
# Don't convert already-converted attrs classes.
continue
if key == "hyperparameters":
if "trainer_type" not in d_copy:
raise TrainerConfigError(
"Hyperparameters were specified but no trainer_type was given."
)
else:
d_copy[key] = check_hyperparam_schedules(
val, d_copy["trainer_type"]
)
try:
d_copy[key] = strict_to_cls(
d_copy[key], all_trainer_settings[d_copy["trainer_type"]]
)
except KeyError:
raise TrainerConfigError(
f"Settings for trainer type {d_copy['trainer_type']} were not found"
)
elif key == "max_steps":
d_copy[key] = int(float(val))
# In some legacy configs, max steps was specified as a float
# elif key == "even_checkpoints":
# if val:
# d_copy["checkpoint_interval"] = int(d_copy["max_steps"] / d_copy["keep_checkpoints"])
elif key == "trainer_type":
if val not in all_trainer_types.keys():
raise TrainerConfigError(f"Invalid trainer type {val} was found")
else:
d_copy[key] = check_and_structure(key, val, t)
return t(**d_copy)
class DefaultTrainerDict(collections.defaultdict):
def __init__(self, *args):
# Depending on how this is called, args may have the defaultdict
# callable at the start of the list or not. In particular, unpickling
# will pass [TrainerSettings].
if args and args[0] == TrainerSettings:
super().__init__(*args)
else:
super().__init__(TrainerSettings, *args)
self._config_specified = True
def set_config_specified(self, require_config_specified: bool) -> None:
self._config_specified = require_config_specified
def __missing__(self, key: Any) -> "TrainerSettings":
if TrainerSettings.default_override is not None:
self[key] = copy.deepcopy(TrainerSettings.default_override)
elif self._config_specified:
raise TrainerConfigError(
f"The behavior name {key} has not been specified in the trainer configuration. "
f"Please add an entry in the configuration file for {key}, or set default_settings."
)
else:
logger.warning(
f"Behavior name {key} does not match any behaviors specified "
f"in the trainer configuration file. A default configuration will be used."
)
self[key] = TrainerSettings()
return self[key]
# COMMAND LINE #########################################################################
@attr.s(auto_attribs=True)
class CheckpointSettings:
run_id: str = parser.get_default("run_id")
initialize_from: Optional[str] = parser.get_default("initialize_from")
load_model: bool = parser.get_default("load_model")
resume: bool = parser.get_default("resume")
force: bool = parser.get_default("force")
train_model: bool = parser.get_default("train_model")
inference: bool = parser.get_default("inference")
results_dir: str = parser.get_default("results_dir")
@property
def write_path(self) -> str:
return os.path.join(self.results_dir, self.run_id)
@property
def maybe_init_path(self) -> Optional[str]:
return (
os.path.join(self.results_dir, self.initialize_from)
if self.initialize_from is not None
else None
)
@property
def run_logs_dir(self) -> str:
return os.path.join(self.write_path, "run_logs")
def prioritize_resume_init(self) -> None:
"""Prioritize explicit command line resume/init over conflicting yaml options.
if both resume/init are set at one place use resume"""
_non_default_args = DetectDefault.non_default_args
if "resume" in _non_default_args:
if self.initialize_from is not None:
logger.warning(
f"Both 'resume' and 'initialize_from={self.initialize_from}' are set!"
f" Current run will be resumed ignoring initialization."
)
self.initialize_from = parser.get_default("initialize_from")
elif "initialize_from" in _non_default_args:
if self.resume:
logger.warning(
f"Both 'resume' and 'initialize_from={self.initialize_from}' are set!"
f" {self.run_id} is initialized_from {self.initialize_from} and resume will be ignored."
)
self.resume = parser.get_default("resume")
elif self.resume and self.initialize_from is not None:
# no cli args but both are set in yaml file
logger.warning(
f"Both 'resume' and 'initialize_from={self.initialize_from}' are set in yaml file!"
f" Current run will be resumed ignoring initialization."
)
self.initialize_from = parser.get_default("initialize_from")
@attr.s(auto_attribs=True)
class EnvironmentSettings:
env_path: Optional[str] = parser.get_default("env_path")
env_args: Optional[List[str]] = parser.get_default("env_args")
base_port: int = parser.get_default("base_port")
num_envs: int = attr.ib(default=parser.get_default("num_envs"))
num_areas: int = attr.ib(default=parser.get_default("num_areas"))
seed: int = parser.get_default("seed")
max_lifetime_restarts: int = parser.get_default("max_lifetime_restarts")
restarts_rate_limit_n: int = parser.get_default("restarts_rate_limit_n")
restarts_rate_limit_period_s: int = parser.get_default(
"restarts_rate_limit_period_s"
)
@num_envs.validator
def validate_num_envs(self, attribute, value):
if value > 1 and self.env_path is None:
raise ValueError("num_envs must be 1 if env_path is not set.")
@num_areas.validator
def validate_num_area(self, attribute, value):
if value <= 0:
raise ValueError("num_areas must be set to a positive number >= 1.")
@attr.s(auto_attribs=True)
class EngineSettings:
width: int = parser.get_default("width")
height: int = parser.get_default("height")
quality_level: int = parser.get_default("quality_level")
time_scale: float = parser.get_default("time_scale")
target_frame_rate: int = parser.get_default("target_frame_rate")
capture_frame_rate: int = parser.get_default("capture_frame_rate")
no_graphics: bool = parser.get_default("no_graphics")
@attr.s(auto_attribs=True)
class TorchSettings:
device: Optional[str] = parser.get_default("device")
@attr.s(auto_attribs=True)
class RunOptions(ExportableSettings):
default_settings: Optional[TrainerSettings] = None
behaviors: TrainerSettings.DefaultTrainerDict = attr.ib(
factory=TrainerSettings.DefaultTrainerDict
)
env_settings: EnvironmentSettings = attr.ib(factory=EnvironmentSettings)
engine_settings: EngineSettings = attr.ib(factory=EngineSettings)
environment_parameters: Optional[Dict[str, EnvironmentParameterSettings]] = None
checkpoint_settings: CheckpointSettings = attr.ib(factory=CheckpointSettings)
torch_settings: TorchSettings = attr.ib(factory=TorchSettings)
# These are options that are relevant to the run itself, and not the engine or environment.
# They will be left here.
debug: bool = parser.get_default("debug")
# Convert to settings while making sure all fields are valid
cattr.register_structure_hook(EnvironmentSettings, strict_to_cls)
cattr.register_structure_hook(EngineSettings, strict_to_cls)
cattr.register_structure_hook(CheckpointSettings, strict_to_cls)
cattr.register_structure_hook_func(
lambda t: t == Dict[str, EnvironmentParameterSettings],
EnvironmentParameterSettings.structure,
)
cattr.register_structure_hook(Lesson, strict_to_cls)
cattr.register_structure_hook(
ParameterRandomizationSettings, ParameterRandomizationSettings.structure
)
cattr.register_unstructure_hook(
ParameterRandomizationSettings, ParameterRandomizationSettings.unstructure
)
cattr.register_structure_hook(TrainerSettings, TrainerSettings.structure)
cattr.register_structure_hook(
TrainerSettings.DefaultTrainerDict, TrainerSettings.dict_to_trainerdict
)
cattr.register_unstructure_hook(collections.defaultdict, defaultdict_to_dict)
@staticmethod
def from_argparse(args: argparse.Namespace) -> "RunOptions":
"""
Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files
from file paths, and converts to a RunOptions instance.
:param args: collection of command-line parameters passed to mlagents-learn
:return: RunOptions representing the passed in arguments, with trainer config, curriculum and sampler
configs loaded from files.
"""
argparse_args = vars(args)
config_path = StoreConfigFile.trainer_config_path
# Load YAML
configured_dict: Dict[str, Any] = {
"checkpoint_settings": {},
"env_settings": {},
"engine_settings": {},
"torch_settings": {},
}
_require_all_behaviors = True
if config_path is not None:
configured_dict.update(load_config(config_path))
else:
# If we're not loading from a file, we don't require all behavior names to be specified.
_require_all_behaviors = False
# Use the YAML file values for all values not specified in the CLI.
for key in configured_dict.keys():
# Detect bad config options
if key not in attr.fields_dict(RunOptions):
raise TrainerConfigError(
"The option {} was specified in your YAML file, but is invalid.".format(
key
)
)
# Override with CLI args
# Keep deprecated --load working, TODO: remove
argparse_args["resume"] = argparse_args["resume"] or argparse_args["load_model"]
for key, val in argparse_args.items():
if key in DetectDefault.non_default_args:
if key in attr.fields_dict(CheckpointSettings):
configured_dict["checkpoint_settings"][key] = val
elif key in attr.fields_dict(EnvironmentSettings):
configured_dict["env_settings"][key] = val
elif key in attr.fields_dict(EngineSettings):
configured_dict["engine_settings"][key] = val
elif key in attr.fields_dict(TorchSettings):
configured_dict["torch_settings"][key] = val
else: # Base options
configured_dict[key] = val
final_runoptions = RunOptions.from_dict(configured_dict)
final_runoptions.checkpoint_settings.prioritize_resume_init()
# Need check to bypass type checking but keep structure on dict working
if isinstance(final_runoptions.behaviors, TrainerSettings.DefaultTrainerDict):
# configure whether or not we should require all behavior names to be found in the config YAML
final_runoptions.behaviors.set_config_specified(_require_all_behaviors)
_non_default_args = DetectDefault.non_default_args
# Prioritize the deterministic mode from the cli for deterministic actions.
if "deterministic" in _non_default_args:
for behaviour in final_runoptions.behaviors.keys():
final_runoptions.behaviors[
behaviour
].network_settings.deterministic = argparse_args["deterministic"]
return final_runoptions
@staticmethod
def from_dict(
options_dict: Dict[str, Any],
) -> "RunOptions":
# If a default settings was specified, set the TrainerSettings class override
if (
"default_settings" in options_dict.keys()
and options_dict["default_settings"] is not None
):
TrainerSettings.default_override = cattr.structure(
options_dict["default_settings"], TrainerSettings
)
return cattr.structure(options_dict, RunOptions)
|