File size: 22,762 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import datetime
from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set
import cloudpickle
import enum
import time

from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.exception import (
    UnityCommunicationException,
    UnityTimeOutException,
    UnityEnvironmentException,
    UnityCommunicatorStoppedException,
)
from multiprocessing import Process, Pipe, Queue
from multiprocessing.connection import Connection
from queue import Empty as EmptyQueueException
from mlagents_envs.base_env import BaseEnv, BehaviorName, BehaviorSpec
from mlagents_envs import logging_util
from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult
from mlagents.trainers.settings import TrainerSettings
from mlagents_envs.timers import (
    TimerNode,
    timed,
    hierarchical_timer,
    reset_timers,
    get_timer_root,
)
from mlagents.trainers.settings import ParameterRandomizationSettings, RunOptions
from mlagents.trainers.action_info import ActionInfo
from mlagents_envs.side_channel.environment_parameters_channel import (
    EnvironmentParametersChannel,
)
from mlagents_envs.side_channel.engine_configuration_channel import (
    EngineConfigurationChannel,
    EngineConfig,
)
from mlagents_envs.side_channel.stats_side_channel import (
    EnvironmentStats,
    StatsSideChannel,
)
from mlagents.trainers.training_analytics_side_channel import (
    TrainingAnalyticsSideChannel,
)
from mlagents_envs.side_channel.side_channel import SideChannel


logger = logging_util.get_logger(__name__)
WORKER_SHUTDOWN_TIMEOUT_S = 10


class EnvironmentCommand(enum.Enum):
    STEP = 1
    BEHAVIOR_SPECS = 2
    ENVIRONMENT_PARAMETERS = 3
    RESET = 4
    CLOSE = 5
    ENV_EXITED = 6
    CLOSED = 7
    TRAINING_STARTED = 8


class EnvironmentRequest(NamedTuple):
    cmd: EnvironmentCommand
    payload: Any = None


class EnvironmentResponse(NamedTuple):
    cmd: EnvironmentCommand
    worker_id: int
    payload: Any


class StepResponse(NamedTuple):
    all_step_result: AllStepResult
    timer_root: Optional[TimerNode]
    environment_stats: EnvironmentStats


class UnityEnvWorker:
    def __init__(self, process: Process, worker_id: int, conn: Connection):
        self.process = process
        self.worker_id = worker_id
        self.conn = conn
        self.previous_step: EnvironmentStep = EnvironmentStep.empty(worker_id)
        self.previous_all_action_info: Dict[str, ActionInfo] = {}
        self.waiting = False
        self.closed = False

    def send(self, cmd: EnvironmentCommand, payload: Any = None) -> None:
        try:
            req = EnvironmentRequest(cmd, payload)
            self.conn.send(req)
        except (BrokenPipeError, EOFError):
            raise UnityCommunicationException("UnityEnvironment worker: send failed.")

    def recv(self) -> EnvironmentResponse:
        try:
            response: EnvironmentResponse = self.conn.recv()
            if response.cmd == EnvironmentCommand.ENV_EXITED:
                env_exception: Exception = response.payload
                raise env_exception
            return response
        except (BrokenPipeError, EOFError):
            raise UnityCommunicationException("UnityEnvironment worker: recv failed.")

    def request_close(self):
        try:
            self.conn.send(EnvironmentRequest(EnvironmentCommand.CLOSE))
        except (BrokenPipeError, EOFError):
            logger.debug(
                f"UnityEnvWorker {self.worker_id} got exception trying to close."
            )
            pass


def worker(
    parent_conn: Connection,
    step_queue: Queue,
    pickled_env_factory: str,
    worker_id: int,
    run_options: RunOptions,
    log_level: int = logging_util.INFO,
) -> None:
    env_factory: Callable[
        [int, List[SideChannel]], UnityEnvironment
    ] = cloudpickle.loads(pickled_env_factory)
    env_parameters = EnvironmentParametersChannel()

    engine_config = EngineConfig(
        width=run_options.engine_settings.width,
        height=run_options.engine_settings.height,
        quality_level=run_options.engine_settings.quality_level,
        time_scale=run_options.engine_settings.time_scale,
        target_frame_rate=run_options.engine_settings.target_frame_rate,
        capture_frame_rate=run_options.engine_settings.capture_frame_rate,
    )
    engine_configuration_channel = EngineConfigurationChannel()
    engine_configuration_channel.set_configuration(engine_config)

    stats_channel = StatsSideChannel()
    training_analytics_channel: Optional[TrainingAnalyticsSideChannel] = None
    if worker_id == 0:
        training_analytics_channel = TrainingAnalyticsSideChannel()
    env: UnityEnvironment = None
    # Set log level. On some platforms, the logger isn't common with the
    # main process, so we need to set it again.
    logging_util.set_log_level(log_level)

    def _send_response(cmd_name: EnvironmentCommand, payload: Any) -> None:
        parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload))

    def _generate_all_results() -> AllStepResult:
        all_step_result: AllStepResult = {}
        for brain_name in env.behavior_specs:
            all_step_result[brain_name] = env.get_steps(brain_name)
        return all_step_result

    try:
        side_channels = [env_parameters, engine_configuration_channel, stats_channel]
        if training_analytics_channel is not None:
            side_channels.append(training_analytics_channel)

        env = env_factory(worker_id, side_channels)
        if (
            not env.academy_capabilities
            or not env.academy_capabilities.trainingAnalytics
        ):
            # Make sure we don't try to send training analytics if the environment doesn't know how to process
            # them. This wouldn't be catastrophic, but would result in unknown SideChannel UUIDs being used.
            training_analytics_channel = None
        if training_analytics_channel:
            training_analytics_channel.environment_initialized(run_options)

        while True:
            req: EnvironmentRequest = parent_conn.recv()
            if req.cmd == EnvironmentCommand.STEP:
                all_action_info = req.payload
                for brain_name, action_info in all_action_info.items():
                    if len(action_info.agent_ids) > 0:
                        env.set_actions(brain_name, action_info.env_action)
                env.step()
                all_step_result = _generate_all_results()
                # The timers in this process are independent from all the processes and the "main" process
                # So after we send back the root timer, we can safely clear them.
                # Note that we could randomly return timers a fraction of the time if we wanted to reduce
                # the data transferred.
                # TODO get gauges from the workers and merge them in the main process too.
                env_stats = stats_channel.get_and_reset_stats()
                step_response = StepResponse(
                    all_step_result, get_timer_root(), env_stats
                )
                step_queue.put(
                    EnvironmentResponse(
                        EnvironmentCommand.STEP, worker_id, step_response
                    )
                )
                reset_timers()
            elif req.cmd == EnvironmentCommand.BEHAVIOR_SPECS:
                _send_response(EnvironmentCommand.BEHAVIOR_SPECS, env.behavior_specs)
            elif req.cmd == EnvironmentCommand.ENVIRONMENT_PARAMETERS:
                for k, v in req.payload.items():
                    if isinstance(v, ParameterRandomizationSettings):
                        v.apply(k, env_parameters)
            elif req.cmd == EnvironmentCommand.TRAINING_STARTED:
                behavior_name, trainer_config = req.payload
                if training_analytics_channel:
                    training_analytics_channel.training_started(
                        behavior_name, trainer_config
                    )
            elif req.cmd == EnvironmentCommand.RESET:
                env.reset()
                all_step_result = _generate_all_results()
                _send_response(EnvironmentCommand.RESET, all_step_result)
            elif req.cmd == EnvironmentCommand.CLOSE:
                break
    except (
        KeyboardInterrupt,
        UnityCommunicationException,
        UnityTimeOutException,
        UnityEnvironmentException,
        UnityCommunicatorStoppedException,
    ) as ex:
        logger.debug(f"UnityEnvironment worker {worker_id}: environment stopping.")
        step_queue.put(
            EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex)
        )
        _send_response(EnvironmentCommand.ENV_EXITED, ex)
    except Exception as ex:
        logger.exception(
            f"UnityEnvironment worker {worker_id}: environment raised an unexpected exception."
        )
        step_queue.put(
            EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex)
        )
        _send_response(EnvironmentCommand.ENV_EXITED, ex)
    finally:
        logger.debug(f"UnityEnvironment worker {worker_id} closing.")
        if env is not None:
            env.close()
        logger.debug(f"UnityEnvironment worker {worker_id} done.")
        parent_conn.close()
        step_queue.put(EnvironmentResponse(EnvironmentCommand.CLOSED, worker_id, None))
        step_queue.close()


class SubprocessEnvManager(EnvManager):
    def __init__(
        self,
        env_factory: Callable[[int, List[SideChannel]], BaseEnv],
        run_options: RunOptions,
        n_env: int = 1,
    ):
        super().__init__()
        self.env_workers: List[UnityEnvWorker] = []
        self.step_queue: Queue = Queue()
        self.workers_alive = 0
        self.env_factory = env_factory
        self.run_options = run_options
        self.env_parameters: Optional[Dict] = None
        # Each worker is correlated with a list of times they restarted within the last time period.
        self.recent_restart_timestamps: List[List[datetime.datetime]] = [
            [] for _ in range(n_env)
        ]
        self.restart_counts: List[int] = [0] * n_env
        for worker_idx in range(n_env):
            self.env_workers.append(
                self.create_worker(
                    worker_idx, self.step_queue, env_factory, run_options
                )
            )
            self.workers_alive += 1

    @staticmethod
    def create_worker(
        worker_id: int,
        step_queue: Queue,
        env_factory: Callable[[int, List[SideChannel]], BaseEnv],
        run_options: RunOptions,
    ) -> UnityEnvWorker:
        parent_conn, child_conn = Pipe()

        # Need to use cloudpickle for the env factory function since function objects aren't picklable
        # on Windows as of Python 3.6.
        pickled_env_factory = cloudpickle.dumps(env_factory)
        child_process = Process(
            target=worker,
            args=(
                child_conn,
                step_queue,
                pickled_env_factory,
                worker_id,
                run_options,
                logger.level,
            ),
        )
        child_process.start()
        return UnityEnvWorker(child_process, worker_id, parent_conn)

    def _queue_steps(self) -> None:
        for env_worker in self.env_workers:
            if not env_worker.waiting:
                env_action_info = self._take_step(env_worker.previous_step)
                env_worker.previous_all_action_info = env_action_info
                env_worker.send(EnvironmentCommand.STEP, env_action_info)
                env_worker.waiting = True

    def _restart_failed_workers(self, first_failure: EnvironmentResponse) -> None:
        if first_failure.cmd != EnvironmentCommand.ENV_EXITED:
            return
        # Drain the step queue to make sure all workers are paused and we have found all concurrent errors.
        # Pausing all training is needed since we need to reset all pending training steps as they could be corrupted.
        other_failures: Dict[int, Exception] = self._drain_step_queue()
        # TODO: Once we use python 3.9 switch to using the | operator to combine dicts.
        failures: Dict[int, Exception] = {
            **{first_failure.worker_id: first_failure.payload},
            **other_failures,
        }
        for worker_id, ex in failures.items():
            self._assert_worker_can_restart(worker_id, ex)
            logger.warning(f"Restarting worker[{worker_id}] after '{ex}'")
            self.recent_restart_timestamps[worker_id].append(datetime.datetime.now())
            self.restart_counts[worker_id] += 1
            self.env_workers[worker_id] = self.create_worker(
                worker_id, self.step_queue, self.env_factory, self.run_options
            )
        # The restarts were successful, clear all the existing training trajectories so we don't use corrupted or
        # outdated data.
        self.reset(self.env_parameters)

    def _drain_step_queue(self) -> Dict[int, Exception]:
        """
        Drains all steps out of the step queue and returns all exceptions from crashed workers.
        This will effectively pause all workers so that they won't do anything until _queue_steps is called.
        """
        all_failures = {}
        workers_still_pending = {w.worker_id for w in self.env_workers if w.waiting}
        deadline = datetime.datetime.now() + datetime.timedelta(minutes=1)
        while workers_still_pending and deadline > datetime.datetime.now():
            try:
                while True:
                    step: EnvironmentResponse = self.step_queue.get_nowait()
                    if step.cmd == EnvironmentCommand.ENV_EXITED:
                        workers_still_pending.add(step.worker_id)
                        all_failures[step.worker_id] = step.payload
                    else:
                        workers_still_pending.remove(step.worker_id)
                        self.env_workers[step.worker_id].waiting = False
            except EmptyQueueException:
                pass
        if deadline < datetime.datetime.now():
            still_waiting = {w.worker_id for w in self.env_workers if w.waiting}
            raise TimeoutError(f"Workers {still_waiting} stuck in waiting state")
        return all_failures

    def _assert_worker_can_restart(self, worker_id: int, exception: Exception) -> None:
        """
        Checks if we can recover from an exception from a worker.
        If the restart limit is exceeded it will raise a UnityCommunicationException.
        If the exception is not recoverable it re-raises the exception.
        """
        if (
            isinstance(exception, UnityCommunicationException)
            or isinstance(exception, UnityTimeOutException)
            or isinstance(exception, UnityEnvironmentException)
            or isinstance(exception, UnityCommunicatorStoppedException)
        ):
            if self._worker_has_restart_quota(worker_id):
                return
            else:
                logger.error(
                    f"Worker {worker_id} exceeded the allowed number of restarts."
                )
                raise exception
        raise exception

    def _worker_has_restart_quota(self, worker_id: int) -> bool:
        self._drop_old_restart_timestamps(worker_id)
        max_lifetime_restarts = self.run_options.env_settings.max_lifetime_restarts
        max_limit_check = (
            max_lifetime_restarts == -1
            or self.restart_counts[worker_id] < max_lifetime_restarts
        )

        rate_limit_n = self.run_options.env_settings.restarts_rate_limit_n
        rate_limit_check = (
            rate_limit_n == -1
            or len(self.recent_restart_timestamps[worker_id]) < rate_limit_n
        )

        return rate_limit_check and max_limit_check

    def _drop_old_restart_timestamps(self, worker_id: int) -> None:
        """
        Drops environment restart timestamps that are outside of the current window.
        """

        def _filter(t: datetime.datetime) -> bool:
            return t > datetime.datetime.now() - datetime.timedelta(
                seconds=self.run_options.env_settings.restarts_rate_limit_period_s
            )

        self.recent_restart_timestamps[worker_id] = list(
            filter(_filter, self.recent_restart_timestamps[worker_id])
        )

    def _step(self) -> List[EnvironmentStep]:
        # Queue steps for any workers which aren't in the "waiting" state.
        self._queue_steps()

        worker_steps: List[EnvironmentResponse] = []
        step_workers: Set[int] = set()
        # Poll the step queue for completed steps from environment workers until we retrieve
        # 1 or more, which we will then return as StepInfos
        while len(worker_steps) < 1:
            try:
                while True:
                    step: EnvironmentResponse = self.step_queue.get_nowait()
                    if step.cmd == EnvironmentCommand.ENV_EXITED:
                        # If even one env exits try to restart all envs that failed.
                        self._restart_failed_workers(step)
                        # Clear state and restart this function.
                        worker_steps.clear()
                        step_workers.clear()
                        self._queue_steps()
                    elif step.worker_id not in step_workers:
                        self.env_workers[step.worker_id].waiting = False
                        worker_steps.append(step)
                        step_workers.add(step.worker_id)
            except EmptyQueueException:
                pass
        step_infos = self._postprocess_steps(worker_steps)
        return step_infos

    def _reset_env(self, config: Optional[Dict] = None) -> List[EnvironmentStep]:
        while any(ew.waiting for ew in self.env_workers):
            if not self.step_queue.empty():
                step = self.step_queue.get_nowait()
                self.env_workers[step.worker_id].waiting = False
        # Send config to environment
        self.set_env_parameters(config)
        # First enqueue reset commands for all workers so that they reset in parallel
        for ew in self.env_workers:
            ew.send(EnvironmentCommand.RESET, config)
        # Next (synchronously) collect the reset observations from each worker in sequence
        for ew in self.env_workers:
            ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {}, {})
        return list(map(lambda ew: ew.previous_step, self.env_workers))

    def set_env_parameters(self, config: Dict = None) -> None:
        """
        Sends environment parameter settings to C# via the
        EnvironmentParametersSidehannel for each worker.
        :param config: Dict of environment parameter keys and values
        """
        self.env_parameters = config
        for ew in self.env_workers:
            ew.send(EnvironmentCommand.ENVIRONMENT_PARAMETERS, config)

    def on_training_started(
        self, behavior_name: str, trainer_settings: TrainerSettings
    ) -> None:
        """
        Handle traing starting for a new behavior type. Generally nothing is necessary here.
        :param behavior_name:
        :param trainer_settings:
        :return:
        """
        for ew in self.env_workers:
            ew.send(
                EnvironmentCommand.TRAINING_STARTED, (behavior_name, trainer_settings)
            )

    @property
    def training_behaviors(self) -> Dict[BehaviorName, BehaviorSpec]:
        result: Dict[BehaviorName, BehaviorSpec] = {}
        for worker in self.env_workers:
            worker.send(EnvironmentCommand.BEHAVIOR_SPECS)
            result.update(worker.recv().payload)
        return result

    def close(self) -> None:
        logger.debug("SubprocessEnvManager closing.")
        for env_worker in self.env_workers:
            env_worker.request_close()
        # Pull messages out of the queue until every worker has CLOSED or we time out.
        deadline = time.time() + WORKER_SHUTDOWN_TIMEOUT_S
        while self.workers_alive > 0 and time.time() < deadline:
            try:
                step: EnvironmentResponse = self.step_queue.get_nowait()
                env_worker = self.env_workers[step.worker_id]
                if step.cmd == EnvironmentCommand.CLOSED and not env_worker.closed:
                    env_worker.closed = True
                    self.workers_alive -= 1
                # Discard all other messages.
            except EmptyQueueException:
                pass
        self.step_queue.close()
        # Sanity check to kill zombie workers and report an issue if they occur.
        if self.workers_alive > 0:
            logger.error("SubprocessEnvManager had workers that didn't signal shutdown")
            for env_worker in self.env_workers:
                if not env_worker.closed and env_worker.process.is_alive():
                    env_worker.process.terminate()
                    logger.error(
                        "A SubprocessEnvManager worker did not shut down correctly so it was forcefully terminated."
                    )
        self.step_queue.join_thread()

    def _postprocess_steps(
        self, env_steps: List[EnvironmentResponse]
    ) -> List[EnvironmentStep]:
        step_infos = []
        timer_nodes = []
        for step in env_steps:
            payload: StepResponse = step.payload
            env_worker = self.env_workers[step.worker_id]
            new_step = EnvironmentStep(
                payload.all_step_result,
                step.worker_id,
                env_worker.previous_all_action_info,
                payload.environment_stats,
            )
            step_infos.append(new_step)
            env_worker.previous_step = new_step

            if payload.timer_root:
                timer_nodes.append(payload.timer_root)

        if timer_nodes:
            with hierarchical_timer("workers") as main_timer_node:
                for worker_timer_node in timer_nodes:
                    main_timer_node.merge(
                        worker_timer_node, root_name="worker_root", is_parallel=True
                    )

        return step_infos

    @timed
    def _take_step(self, last_step: EnvironmentStep) -> Dict[BehaviorName, ActionInfo]:
        all_action_info: Dict[str, ActionInfo] = {}
        for brain_name, step_tuple in last_step.current_all_step_result.items():
            if brain_name in self.policies:
                all_action_info[brain_name] = self.policies[brain_name].get_action(
                    step_tuple[0], last_step.worker_id
                )
        return all_action_info