File size: 22,762 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import datetime
from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set
import cloudpickle
import enum
import time
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.exception import (
UnityCommunicationException,
UnityTimeOutException,
UnityEnvironmentException,
UnityCommunicatorStoppedException,
)
from multiprocessing import Process, Pipe, Queue
from multiprocessing.connection import Connection
from queue import Empty as EmptyQueueException
from mlagents_envs.base_env import BaseEnv, BehaviorName, BehaviorSpec
from mlagents_envs import logging_util
from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult
from mlagents.trainers.settings import TrainerSettings
from mlagents_envs.timers import (
TimerNode,
timed,
hierarchical_timer,
reset_timers,
get_timer_root,
)
from mlagents.trainers.settings import ParameterRandomizationSettings, RunOptions
from mlagents.trainers.action_info import ActionInfo
from mlagents_envs.side_channel.environment_parameters_channel import (
EnvironmentParametersChannel,
)
from mlagents_envs.side_channel.engine_configuration_channel import (
EngineConfigurationChannel,
EngineConfig,
)
from mlagents_envs.side_channel.stats_side_channel import (
EnvironmentStats,
StatsSideChannel,
)
from mlagents.trainers.training_analytics_side_channel import (
TrainingAnalyticsSideChannel,
)
from mlagents_envs.side_channel.side_channel import SideChannel
logger = logging_util.get_logger(__name__)
WORKER_SHUTDOWN_TIMEOUT_S = 10
class EnvironmentCommand(enum.Enum):
STEP = 1
BEHAVIOR_SPECS = 2
ENVIRONMENT_PARAMETERS = 3
RESET = 4
CLOSE = 5
ENV_EXITED = 6
CLOSED = 7
TRAINING_STARTED = 8
class EnvironmentRequest(NamedTuple):
cmd: EnvironmentCommand
payload: Any = None
class EnvironmentResponse(NamedTuple):
cmd: EnvironmentCommand
worker_id: int
payload: Any
class StepResponse(NamedTuple):
all_step_result: AllStepResult
timer_root: Optional[TimerNode]
environment_stats: EnvironmentStats
class UnityEnvWorker:
def __init__(self, process: Process, worker_id: int, conn: Connection):
self.process = process
self.worker_id = worker_id
self.conn = conn
self.previous_step: EnvironmentStep = EnvironmentStep.empty(worker_id)
self.previous_all_action_info: Dict[str, ActionInfo] = {}
self.waiting = False
self.closed = False
def send(self, cmd: EnvironmentCommand, payload: Any = None) -> None:
try:
req = EnvironmentRequest(cmd, payload)
self.conn.send(req)
except (BrokenPipeError, EOFError):
raise UnityCommunicationException("UnityEnvironment worker: send failed.")
def recv(self) -> EnvironmentResponse:
try:
response: EnvironmentResponse = self.conn.recv()
if response.cmd == EnvironmentCommand.ENV_EXITED:
env_exception: Exception = response.payload
raise env_exception
return response
except (BrokenPipeError, EOFError):
raise UnityCommunicationException("UnityEnvironment worker: recv failed.")
def request_close(self):
try:
self.conn.send(EnvironmentRequest(EnvironmentCommand.CLOSE))
except (BrokenPipeError, EOFError):
logger.debug(
f"UnityEnvWorker {self.worker_id} got exception trying to close."
)
pass
def worker(
parent_conn: Connection,
step_queue: Queue,
pickled_env_factory: str,
worker_id: int,
run_options: RunOptions,
log_level: int = logging_util.INFO,
) -> None:
env_factory: Callable[
[int, List[SideChannel]], UnityEnvironment
] = cloudpickle.loads(pickled_env_factory)
env_parameters = EnvironmentParametersChannel()
engine_config = EngineConfig(
width=run_options.engine_settings.width,
height=run_options.engine_settings.height,
quality_level=run_options.engine_settings.quality_level,
time_scale=run_options.engine_settings.time_scale,
target_frame_rate=run_options.engine_settings.target_frame_rate,
capture_frame_rate=run_options.engine_settings.capture_frame_rate,
)
engine_configuration_channel = EngineConfigurationChannel()
engine_configuration_channel.set_configuration(engine_config)
stats_channel = StatsSideChannel()
training_analytics_channel: Optional[TrainingAnalyticsSideChannel] = None
if worker_id == 0:
training_analytics_channel = TrainingAnalyticsSideChannel()
env: UnityEnvironment = None
# Set log level. On some platforms, the logger isn't common with the
# main process, so we need to set it again.
logging_util.set_log_level(log_level)
def _send_response(cmd_name: EnvironmentCommand, payload: Any) -> None:
parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload))
def _generate_all_results() -> AllStepResult:
all_step_result: AllStepResult = {}
for brain_name in env.behavior_specs:
all_step_result[brain_name] = env.get_steps(brain_name)
return all_step_result
try:
side_channels = [env_parameters, engine_configuration_channel, stats_channel]
if training_analytics_channel is not None:
side_channels.append(training_analytics_channel)
env = env_factory(worker_id, side_channels)
if (
not env.academy_capabilities
or not env.academy_capabilities.trainingAnalytics
):
# Make sure we don't try to send training analytics if the environment doesn't know how to process
# them. This wouldn't be catastrophic, but would result in unknown SideChannel UUIDs being used.
training_analytics_channel = None
if training_analytics_channel:
training_analytics_channel.environment_initialized(run_options)
while True:
req: EnvironmentRequest = parent_conn.recv()
if req.cmd == EnvironmentCommand.STEP:
all_action_info = req.payload
for brain_name, action_info in all_action_info.items():
if len(action_info.agent_ids) > 0:
env.set_actions(brain_name, action_info.env_action)
env.step()
all_step_result = _generate_all_results()
# The timers in this process are independent from all the processes and the "main" process
# So after we send back the root timer, we can safely clear them.
# Note that we could randomly return timers a fraction of the time if we wanted to reduce
# the data transferred.
# TODO get gauges from the workers and merge them in the main process too.
env_stats = stats_channel.get_and_reset_stats()
step_response = StepResponse(
all_step_result, get_timer_root(), env_stats
)
step_queue.put(
EnvironmentResponse(
EnvironmentCommand.STEP, worker_id, step_response
)
)
reset_timers()
elif req.cmd == EnvironmentCommand.BEHAVIOR_SPECS:
_send_response(EnvironmentCommand.BEHAVIOR_SPECS, env.behavior_specs)
elif req.cmd == EnvironmentCommand.ENVIRONMENT_PARAMETERS:
for k, v in req.payload.items():
if isinstance(v, ParameterRandomizationSettings):
v.apply(k, env_parameters)
elif req.cmd == EnvironmentCommand.TRAINING_STARTED:
behavior_name, trainer_config = req.payload
if training_analytics_channel:
training_analytics_channel.training_started(
behavior_name, trainer_config
)
elif req.cmd == EnvironmentCommand.RESET:
env.reset()
all_step_result = _generate_all_results()
_send_response(EnvironmentCommand.RESET, all_step_result)
elif req.cmd == EnvironmentCommand.CLOSE:
break
except (
KeyboardInterrupt,
UnityCommunicationException,
UnityTimeOutException,
UnityEnvironmentException,
UnityCommunicatorStoppedException,
) as ex:
logger.debug(f"UnityEnvironment worker {worker_id}: environment stopping.")
step_queue.put(
EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex)
)
_send_response(EnvironmentCommand.ENV_EXITED, ex)
except Exception as ex:
logger.exception(
f"UnityEnvironment worker {worker_id}: environment raised an unexpected exception."
)
step_queue.put(
EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex)
)
_send_response(EnvironmentCommand.ENV_EXITED, ex)
finally:
logger.debug(f"UnityEnvironment worker {worker_id} closing.")
if env is not None:
env.close()
logger.debug(f"UnityEnvironment worker {worker_id} done.")
parent_conn.close()
step_queue.put(EnvironmentResponse(EnvironmentCommand.CLOSED, worker_id, None))
step_queue.close()
class SubprocessEnvManager(EnvManager):
def __init__(
self,
env_factory: Callable[[int, List[SideChannel]], BaseEnv],
run_options: RunOptions,
n_env: int = 1,
):
super().__init__()
self.env_workers: List[UnityEnvWorker] = []
self.step_queue: Queue = Queue()
self.workers_alive = 0
self.env_factory = env_factory
self.run_options = run_options
self.env_parameters: Optional[Dict] = None
# Each worker is correlated with a list of times they restarted within the last time period.
self.recent_restart_timestamps: List[List[datetime.datetime]] = [
[] for _ in range(n_env)
]
self.restart_counts: List[int] = [0] * n_env
for worker_idx in range(n_env):
self.env_workers.append(
self.create_worker(
worker_idx, self.step_queue, env_factory, run_options
)
)
self.workers_alive += 1
@staticmethod
def create_worker(
worker_id: int,
step_queue: Queue,
env_factory: Callable[[int, List[SideChannel]], BaseEnv],
run_options: RunOptions,
) -> UnityEnvWorker:
parent_conn, child_conn = Pipe()
# Need to use cloudpickle for the env factory function since function objects aren't picklable
# on Windows as of Python 3.6.
pickled_env_factory = cloudpickle.dumps(env_factory)
child_process = Process(
target=worker,
args=(
child_conn,
step_queue,
pickled_env_factory,
worker_id,
run_options,
logger.level,
),
)
child_process.start()
return UnityEnvWorker(child_process, worker_id, parent_conn)
def _queue_steps(self) -> None:
for env_worker in self.env_workers:
if not env_worker.waiting:
env_action_info = self._take_step(env_worker.previous_step)
env_worker.previous_all_action_info = env_action_info
env_worker.send(EnvironmentCommand.STEP, env_action_info)
env_worker.waiting = True
def _restart_failed_workers(self, first_failure: EnvironmentResponse) -> None:
if first_failure.cmd != EnvironmentCommand.ENV_EXITED:
return
# Drain the step queue to make sure all workers are paused and we have found all concurrent errors.
# Pausing all training is needed since we need to reset all pending training steps as they could be corrupted.
other_failures: Dict[int, Exception] = self._drain_step_queue()
# TODO: Once we use python 3.9 switch to using the | operator to combine dicts.
failures: Dict[int, Exception] = {
**{first_failure.worker_id: first_failure.payload},
**other_failures,
}
for worker_id, ex in failures.items():
self._assert_worker_can_restart(worker_id, ex)
logger.warning(f"Restarting worker[{worker_id}] after '{ex}'")
self.recent_restart_timestamps[worker_id].append(datetime.datetime.now())
self.restart_counts[worker_id] += 1
self.env_workers[worker_id] = self.create_worker(
worker_id, self.step_queue, self.env_factory, self.run_options
)
# The restarts were successful, clear all the existing training trajectories so we don't use corrupted or
# outdated data.
self.reset(self.env_parameters)
def _drain_step_queue(self) -> Dict[int, Exception]:
"""
Drains all steps out of the step queue and returns all exceptions from crashed workers.
This will effectively pause all workers so that they won't do anything until _queue_steps is called.
"""
all_failures = {}
workers_still_pending = {w.worker_id for w in self.env_workers if w.waiting}
deadline = datetime.datetime.now() + datetime.timedelta(minutes=1)
while workers_still_pending and deadline > datetime.datetime.now():
try:
while True:
step: EnvironmentResponse = self.step_queue.get_nowait()
if step.cmd == EnvironmentCommand.ENV_EXITED:
workers_still_pending.add(step.worker_id)
all_failures[step.worker_id] = step.payload
else:
workers_still_pending.remove(step.worker_id)
self.env_workers[step.worker_id].waiting = False
except EmptyQueueException:
pass
if deadline < datetime.datetime.now():
still_waiting = {w.worker_id for w in self.env_workers if w.waiting}
raise TimeoutError(f"Workers {still_waiting} stuck in waiting state")
return all_failures
def _assert_worker_can_restart(self, worker_id: int, exception: Exception) -> None:
"""
Checks if we can recover from an exception from a worker.
If the restart limit is exceeded it will raise a UnityCommunicationException.
If the exception is not recoverable it re-raises the exception.
"""
if (
isinstance(exception, UnityCommunicationException)
or isinstance(exception, UnityTimeOutException)
or isinstance(exception, UnityEnvironmentException)
or isinstance(exception, UnityCommunicatorStoppedException)
):
if self._worker_has_restart_quota(worker_id):
return
else:
logger.error(
f"Worker {worker_id} exceeded the allowed number of restarts."
)
raise exception
raise exception
def _worker_has_restart_quota(self, worker_id: int) -> bool:
self._drop_old_restart_timestamps(worker_id)
max_lifetime_restarts = self.run_options.env_settings.max_lifetime_restarts
max_limit_check = (
max_lifetime_restarts == -1
or self.restart_counts[worker_id] < max_lifetime_restarts
)
rate_limit_n = self.run_options.env_settings.restarts_rate_limit_n
rate_limit_check = (
rate_limit_n == -1
or len(self.recent_restart_timestamps[worker_id]) < rate_limit_n
)
return rate_limit_check and max_limit_check
def _drop_old_restart_timestamps(self, worker_id: int) -> None:
"""
Drops environment restart timestamps that are outside of the current window.
"""
def _filter(t: datetime.datetime) -> bool:
return t > datetime.datetime.now() - datetime.timedelta(
seconds=self.run_options.env_settings.restarts_rate_limit_period_s
)
self.recent_restart_timestamps[worker_id] = list(
filter(_filter, self.recent_restart_timestamps[worker_id])
)
def _step(self) -> List[EnvironmentStep]:
# Queue steps for any workers which aren't in the "waiting" state.
self._queue_steps()
worker_steps: List[EnvironmentResponse] = []
step_workers: Set[int] = set()
# Poll the step queue for completed steps from environment workers until we retrieve
# 1 or more, which we will then return as StepInfos
while len(worker_steps) < 1:
try:
while True:
step: EnvironmentResponse = self.step_queue.get_nowait()
if step.cmd == EnvironmentCommand.ENV_EXITED:
# If even one env exits try to restart all envs that failed.
self._restart_failed_workers(step)
# Clear state and restart this function.
worker_steps.clear()
step_workers.clear()
self._queue_steps()
elif step.worker_id not in step_workers:
self.env_workers[step.worker_id].waiting = False
worker_steps.append(step)
step_workers.add(step.worker_id)
except EmptyQueueException:
pass
step_infos = self._postprocess_steps(worker_steps)
return step_infos
def _reset_env(self, config: Optional[Dict] = None) -> List[EnvironmentStep]:
while any(ew.waiting for ew in self.env_workers):
if not self.step_queue.empty():
step = self.step_queue.get_nowait()
self.env_workers[step.worker_id].waiting = False
# Send config to environment
self.set_env_parameters(config)
# First enqueue reset commands for all workers so that they reset in parallel
for ew in self.env_workers:
ew.send(EnvironmentCommand.RESET, config)
# Next (synchronously) collect the reset observations from each worker in sequence
for ew in self.env_workers:
ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {}, {})
return list(map(lambda ew: ew.previous_step, self.env_workers))
def set_env_parameters(self, config: Dict = None) -> None:
"""
Sends environment parameter settings to C# via the
EnvironmentParametersSidehannel for each worker.
:param config: Dict of environment parameter keys and values
"""
self.env_parameters = config
for ew in self.env_workers:
ew.send(EnvironmentCommand.ENVIRONMENT_PARAMETERS, config)
def on_training_started(
self, behavior_name: str, trainer_settings: TrainerSettings
) -> None:
"""
Handle traing starting for a new behavior type. Generally nothing is necessary here.
:param behavior_name:
:param trainer_settings:
:return:
"""
for ew in self.env_workers:
ew.send(
EnvironmentCommand.TRAINING_STARTED, (behavior_name, trainer_settings)
)
@property
def training_behaviors(self) -> Dict[BehaviorName, BehaviorSpec]:
result: Dict[BehaviorName, BehaviorSpec] = {}
for worker in self.env_workers:
worker.send(EnvironmentCommand.BEHAVIOR_SPECS)
result.update(worker.recv().payload)
return result
def close(self) -> None:
logger.debug("SubprocessEnvManager closing.")
for env_worker in self.env_workers:
env_worker.request_close()
# Pull messages out of the queue until every worker has CLOSED or we time out.
deadline = time.time() + WORKER_SHUTDOWN_TIMEOUT_S
while self.workers_alive > 0 and time.time() < deadline:
try:
step: EnvironmentResponse = self.step_queue.get_nowait()
env_worker = self.env_workers[step.worker_id]
if step.cmd == EnvironmentCommand.CLOSED and not env_worker.closed:
env_worker.closed = True
self.workers_alive -= 1
# Discard all other messages.
except EmptyQueueException:
pass
self.step_queue.close()
# Sanity check to kill zombie workers and report an issue if they occur.
if self.workers_alive > 0:
logger.error("SubprocessEnvManager had workers that didn't signal shutdown")
for env_worker in self.env_workers:
if not env_worker.closed and env_worker.process.is_alive():
env_worker.process.terminate()
logger.error(
"A SubprocessEnvManager worker did not shut down correctly so it was forcefully terminated."
)
self.step_queue.join_thread()
def _postprocess_steps(
self, env_steps: List[EnvironmentResponse]
) -> List[EnvironmentStep]:
step_infos = []
timer_nodes = []
for step in env_steps:
payload: StepResponse = step.payload
env_worker = self.env_workers[step.worker_id]
new_step = EnvironmentStep(
payload.all_step_result,
step.worker_id,
env_worker.previous_all_action_info,
payload.environment_stats,
)
step_infos.append(new_step)
env_worker.previous_step = new_step
if payload.timer_root:
timer_nodes.append(payload.timer_root)
if timer_nodes:
with hierarchical_timer("workers") as main_timer_node:
for worker_timer_node in timer_nodes:
main_timer_node.merge(
worker_timer_node, root_name="worker_root", is_parallel=True
)
return step_infos
@timed
def _take_step(self, last_step: EnvironmentStep) -> Dict[BehaviorName, ActionInfo]:
all_action_info: Dict[str, ActionInfo] = {}
for brain_name, step_tuple in last_step.current_all_step_result.items():
if brain_name in self.policies:
all_action_info[brain_name] = self.policies[brain_name].get_action(
step_tuple[0], last_step.worker_id
)
return all_action_info
|