File size: 22,957 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import random
from typing import Dict, List, Any, Tuple
import numpy as np

from mlagents_envs.base_env import (
    ActionSpec,
    ObservationSpec,
    ObservationType,
    ActionTuple,
    BaseEnv,
    BehaviorSpec,
    DecisionSteps,
    TerminalSteps,
    BehaviorMapping,
)
from .test_rpc_utils import proto_from_steps_and_action
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import (
    AgentInfoActionPairProto,
)
from mlagents.trainers.tests.dummy_config import create_observation_specs_with_shapes

OBS_SIZE = 1
VIS_OBS_SIZE = (20, 20, 3)
VAR_LEN_SIZE = (10, 5)
STEP_SIZE = 0.2

TIME_PENALTY = 0.01
MIN_STEPS = int(1.0 / STEP_SIZE) + 1
SUCCESS_REWARD = 1.0 + MIN_STEPS * TIME_PENALTY


def clamp(x, min_val, max_val):
    return max(min_val, min(x, max_val))


class SimpleEnvironment(BaseEnv):
    """
    Very simple "game" - the agent has a position on [-1, 1], gets a reward of 1 if it reaches 1, and a reward of -1 if
    it reaches -1. The position is incremented by the action amount (clamped to [-step_size, step_size]).
    """

    def __init__(
        self,
        brain_names,
        step_size=STEP_SIZE,
        num_visual=0,
        num_vector=1,
        num_var_len=0,
        vis_obs_size=VIS_OBS_SIZE,
        vec_obs_size=OBS_SIZE,
        var_len_obs_size=VAR_LEN_SIZE,
        action_sizes=(1, 0),
        goal_indices=None,
    ):
        super().__init__()
        self.num_visual = num_visual
        self.num_vector = num_vector
        self.num_var_len = num_var_len
        self.vis_obs_size = vis_obs_size
        self.vec_obs_size = vec_obs_size
        self.var_len_obs_size = var_len_obs_size
        self.goal_indices = goal_indices
        continuous_action_size, discrete_action_size = action_sizes
        discrete_tuple = tuple(2 for _ in range(discrete_action_size))
        action_spec = ActionSpec(continuous_action_size, discrete_tuple)
        self.total_action_size = (
            continuous_action_size + discrete_action_size
        )  # to set the goals/positions
        self.action_spec = action_spec
        self.behavior_spec = BehaviorSpec(self._make_observation_specs(), action_spec)
        self.action_spec = action_spec
        self.names = brain_names
        self.positions: Dict[str, List[float]] = {}
        self.step_count: Dict[str, float] = {}

        # Concatenate the arguments for a consistent random seed
        seed = (
            brain_names,
            step_size,
            num_visual,
            num_vector,
            num_var_len,
            vis_obs_size,
            vec_obs_size,
            var_len_obs_size,
            action_sizes,
        )
        self.random = random.Random(str(seed))

        self.goal: Dict[str, int] = {}
        self.action = {}
        self.rewards: Dict[str, float] = {}
        self.final_rewards: Dict[str, List[float]] = {}
        self.step_result: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {}
        self.agent_id: Dict[str, int] = {}
        self.step_size = step_size  # defines the difficulty of the test
        # Allow to be used as a UnityEnvironment during tests
        self.academy_capabilities = None

        for name in self.names:
            self.agent_id[name] = 0
            self.goal[name] = self.random.choice([-1, 1])
            self.rewards[name] = 0
            self.final_rewards[name] = []
            self._reset_agent(name)
            self.action[name] = None
            self.step_result[name] = None

    def _make_observation_specs(self) -> List[ObservationSpec]:
        obs_shape: List[Any] = []
        for _ in range(self.num_vector):
            obs_shape.append((self.vec_obs_size,))
        for _ in range(self.num_visual):
            obs_shape.append(self.vis_obs_size)
        for _ in range(self.num_var_len):
            obs_shape.append(self.var_len_obs_size)
        obs_spec = create_observation_specs_with_shapes(obs_shape)
        if self.goal_indices is not None:
            for i in range(len(obs_spec)):
                if i in self.goal_indices:
                    obs_spec[i] = ObservationSpec(
                        shape=obs_spec[i].shape,
                        dimension_property=obs_spec[i].dimension_property,
                        observation_type=ObservationType.GOAL_SIGNAL,
                        name=obs_spec[i].name,
                    )
        return obs_spec

    def _make_obs(self, value: float) -> List[np.ndarray]:
        obs = []
        for _ in range(self.num_vector):
            obs.append(np.ones((1, self.vec_obs_size), dtype=np.float32) * value)
        for _ in range(self.num_visual):
            obs.append(np.ones((1,) + self.vis_obs_size, dtype=np.float32) * value)
        for _ in range(self.num_var_len):
            obs.append(np.ones((1,) + self.var_len_obs_size, dtype=np.float32) * value)
        return obs

    @property
    def behavior_specs(self):
        behavior_dict = {}
        for n in self.names:
            behavior_dict[n] = self.behavior_spec
        return BehaviorMapping(behavior_dict)

    def set_action_for_agent(self, behavior_name, agent_id, action):
        pass

    def set_actions(self, behavior_name, action):
        self.action[behavior_name] = action

    def get_steps(self, behavior_name):
        return self.step_result[behavior_name]

    def _take_action(self, name: str) -> bool:
        deltas = []
        _act = self.action[name]
        if self.action_spec.continuous_size > 0:
            for _cont in _act.continuous[0]:
                deltas.append(_cont)
        if self.action_spec.discrete_size > 0:
            for _disc in _act.discrete[0]:
                deltas.append(1 if _disc else -1)
        for i, _delta in enumerate(deltas):
            _delta = clamp(_delta, -self.step_size, self.step_size)
            self.positions[name][i] += _delta
            self.positions[name][i] = clamp(self.positions[name][i], -1, 1)
            self.step_count[name] += 1
            # Both must be in 1.0 to be done
        done = all(pos >= 1.0 or pos <= -1.0 for pos in self.positions[name])
        return done

    def _generate_mask(self):
        action_mask = None
        if self.action_spec.discrete_size > 0:
            # LL-Python API will return an empty dim if there is only 1 agent.
            ndmask = np.array(
                2 * self.action_spec.discrete_size * [False], dtype=np.bool
            )
            ndmask = np.expand_dims(ndmask, axis=0)
            action_mask = [ndmask]
        return action_mask

    def _compute_reward(self, name: str, done: bool) -> float:
        if done:
            reward = 0.0
            for _pos in self.positions[name]:
                reward += (SUCCESS_REWARD * _pos * self.goal[name]) / len(
                    self.positions[name]
                )
        else:
            reward = -TIME_PENALTY
        return reward

    def _reset_agent(self, name):
        self.goal[name] = self.random.choice([-1, 1])
        self.positions[name] = [0.0 for _ in range(self.total_action_size)]
        self.step_count[name] = 0
        self.rewards[name] = 0
        self.agent_id[name] = self.agent_id[name] + 1

    def _make_batched_step(
        self, name: str, done: bool, reward: float, group_reward: float
    ) -> Tuple[DecisionSteps, TerminalSteps]:
        m_vector_obs = self._make_obs(self.goal[name])
        m_reward = np.array([reward], dtype=np.float32)
        m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
        m_group_id = np.array([0], dtype=np.int32)
        m_group_reward = np.array([group_reward], dtype=np.float32)
        action_mask = self._generate_mask()
        decision_step = DecisionSteps(
            m_vector_obs, m_reward, m_agent_id, action_mask, m_group_id, m_group_reward
        )
        terminal_step = TerminalSteps.empty(self.behavior_spec)
        if done:
            self.final_rewards[name].append(self.rewards[name])
            self._reset_agent(name)
            new_vector_obs = self._make_obs(self.goal[name])
            (
                new_reward,
                new_done,
                new_agent_id,
                new_action_mask,
                new_group_id,
                new_group_reward,
            ) = self._construct_reset_step(name)

            decision_step = DecisionSteps(
                new_vector_obs,
                new_reward,
                new_agent_id,
                new_action_mask,
                new_group_id,
                new_group_reward,
            )
            terminal_step = TerminalSteps(
                m_vector_obs,
                m_reward,
                np.array([False], dtype=np.bool),
                m_agent_id,
                m_group_id,
                m_group_reward,
            )
        return (decision_step, terminal_step)

    def _construct_reset_step(
        self, name: str
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
        new_reward = np.array([0.0], dtype=np.float32)
        new_done = np.array([False], dtype=np.bool)
        new_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
        new_action_mask = self._generate_mask()
        new_group_id = np.array([0], dtype=np.int32)
        new_group_reward = np.array([0.0], dtype=np.float32)
        return (
            new_reward,
            new_done,
            new_agent_id,
            new_action_mask,
            new_group_id,
            new_group_reward,
        )

    def step(self) -> None:
        assert all(action is not None for action in self.action.values())
        for name in self.names:

            done = self._take_action(name)
            reward = self._compute_reward(name, done)
            self.rewards[name] += reward
            self.step_result[name] = self._make_batched_step(name, done, reward, 0.0)

    def reset(self) -> None:  # type: ignore
        for name in self.names:
            self._reset_agent(name)
            self.step_result[name] = self._make_batched_step(name, False, 0.0, 0.0)

    @property
    def reset_parameters(self) -> Dict[str, str]:
        return {}

    def close(self):
        pass


class MemoryEnvironment(SimpleEnvironment):
    def __init__(self, brain_names, action_sizes=(1, 0), step_size=0.2):
        super().__init__(brain_names, action_sizes=action_sizes, step_size=step_size)
        # Number of steps to reveal the goal for. Lower is harder. Should be
        # less than 1/step_size to force agent to use memory
        self.num_show_steps = 2

    def _make_batched_step(
        self, name: str, done: bool, reward: float, group_reward: float
    ) -> Tuple[DecisionSteps, TerminalSteps]:
        recurrent_obs_val = (
            self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
        )
        m_vector_obs = self._make_obs(recurrent_obs_val)
        m_reward = np.array([reward], dtype=np.float32)
        m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
        m_group_id = np.array([0], dtype=np.int32)
        m_group_reward = np.array([group_reward], dtype=np.float32)
        action_mask = self._generate_mask()
        decision_step = DecisionSteps(
            m_vector_obs, m_reward, m_agent_id, action_mask, m_group_id, m_group_reward
        )
        terminal_step = TerminalSteps.empty(self.behavior_spec)
        if done:
            self.final_rewards[name].append(self.rewards[name])
            self._reset_agent(name)
            recurrent_obs_val = (
                self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
            )
            new_vector_obs = self._make_obs(recurrent_obs_val)
            (
                new_reward,
                new_done,
                new_agent_id,
                new_action_mask,
                new_group_id,
                new_group_reward,
            ) = self._construct_reset_step(name)
            decision_step = DecisionSteps(
                new_vector_obs,
                new_reward,
                new_agent_id,
                new_action_mask,
                new_group_id,
                new_group_reward,
            )
            terminal_step = TerminalSteps(
                m_vector_obs,
                m_reward,
                np.array([False], dtype=np.bool),
                m_agent_id,
                m_group_id,
                m_group_reward,
            )
        return (decision_step, terminal_step)


class MultiAgentEnvironment(BaseEnv):
    """
    The MultiAgentEnvironment maintains a list of SimpleEnvironment, one for each agent.
    When sending DecisionSteps and TerminalSteps to the trainers, it first batches the
    decision steps from the individual environments. When setting actions, it indexes the
    batched ActionTuple to obtain the ActionTuple for individual agents
    """

    def __init__(
        self,
        brain_names,
        step_size=STEP_SIZE,
        num_visual=0,
        num_vector=1,
        num_var_len=0,
        vis_obs_size=VIS_OBS_SIZE,
        vec_obs_size=OBS_SIZE,
        var_len_obs_size=VAR_LEN_SIZE,
        action_sizes=(1, 0),
        num_agents=2,
        goal_indices=None,
    ):
        super().__init__()
        self.envs = {}
        self.dones = {}
        self.just_died = set()
        self.names = brain_names
        self.final_rewards: Dict[str, List[float]] = {}
        for name in brain_names:
            self.final_rewards[name] = []
            for i in range(num_agents):
                name_and_num = name + str(i)
                self.envs[name_and_num] = SimpleEnvironment(
                    [name],
                    step_size,
                    num_visual,
                    num_vector,
                    num_var_len,
                    vis_obs_size,
                    vec_obs_size,
                    var_len_obs_size,
                    action_sizes,
                    goal_indices,
                )
                self.dones[name_and_num] = False
                self.envs[name_and_num].reset()
        # All envs have the same behavior spec, so just get the last one.
        self.behavior_spec = self.envs[name_and_num].behavior_spec
        self.action_spec = self.envs[name_and_num].action_spec
        self.num_agents = num_agents

    @property
    def all_done(self):
        return all(self.dones.values())

    @property
    def behavior_specs(self):
        behavior_dict = {}
        for n in self.names:
            behavior_dict[n] = self.behavior_spec
        return BehaviorMapping(behavior_dict)

    def set_action_for_agent(self, behavior_name, agent_id, action):
        pass

    def set_actions(self, behavior_name, action):
        # The ActionTuple contains the actions for all n_agents. This
        # slices the ActionTuple into an action tuple for each environment
        # and sets it. The index j is used to ignore agents that have already
        # reached done.
        j = 0
        for i in range(self.num_agents):
            _act = ActionTuple()
            name_and_num = behavior_name + str(i)
            env = self.envs[name_and_num]
            if not self.dones[name_and_num]:
                if self.action_spec.continuous_size > 0:
                    _act.add_continuous(action.continuous[j : j + 1])
                if self.action_spec.discrete_size > 0:
                    _disc_list = [action.discrete[j, :]]
                    _act.add_discrete(np.array(_disc_list))
                j += 1
                env.action[behavior_name] = _act

    def get_steps(self, behavior_name):
        # This gets the individual DecisionSteps and TerminalSteps
        # from the envs and merges them into a batch to be sent
        # to the AgentProcessor.
        dec_vec_obs = []
        dec_reward = []
        dec_group_reward = []
        dec_agent_id = []
        dec_group_id = []
        ter_vec_obs = []
        ter_reward = []
        ter_group_reward = []
        ter_agent_id = []
        ter_group_id = []
        interrupted = []

        action_mask = None
        terminal_step = TerminalSteps.empty(self.behavior_spec)
        decision_step = None
        for i in range(self.num_agents):
            name_and_num = behavior_name + str(i)
            env = self.envs[name_and_num]
            _dec, _term = env.step_result[behavior_name]
            if not self.dones[name_and_num]:
                dec_agent_id.append(i)
                dec_group_id.append(1)
                if len(dec_vec_obs) > 0:
                    for j, obs in enumerate(_dec.obs):
                        dec_vec_obs[j] = np.concatenate((dec_vec_obs[j], obs), axis=0)
                else:
                    for obs in _dec.obs:
                        dec_vec_obs.append(obs)
                dec_reward.append(_dec.reward[0])
                dec_group_reward.append(_dec.group_reward[0])
                if _dec.action_mask is not None:
                    if action_mask is None:
                        action_mask = []
                    if len(action_mask) > 0:
                        action_mask[0] = np.concatenate(
                            (action_mask[0], _dec.action_mask[0]), axis=0
                        )
                    else:
                        action_mask.append(_dec.action_mask[0])
            if len(_term.reward) > 0 and name_and_num in self.just_died:
                ter_agent_id.append(i)
                ter_group_id.append(1)
                if len(ter_vec_obs) > 0:
                    for j, obs in enumerate(_term.obs):
                        ter_vec_obs[j] = np.concatenate((ter_vec_obs[j], obs), axis=0)
                else:
                    for obs in _term.obs:
                        ter_vec_obs.append(obs)
                ter_reward.append(_term.reward[0])
                ter_group_reward.append(_term.group_reward[0])
                interrupted.append(False)
                self.just_died.remove(name_and_num)
        decision_step = DecisionSteps(
            dec_vec_obs,
            dec_reward,
            dec_agent_id,
            action_mask,
            dec_group_id,
            dec_group_reward,
        )
        terminal_step = TerminalSteps(
            ter_vec_obs,
            ter_reward,
            interrupted,
            ter_agent_id,
            ter_group_id,
            ter_group_reward,
        )
        return (decision_step, terminal_step)

    def step(self) -> None:
        # Steps all environments and calls reset if all agents are done.
        for name in self.names:
            for i in range(self.num_agents):
                name_and_num = name + str(i)
                # Does not step the env if done
                if not self.dones[name_and_num]:
                    env = self.envs[name_and_num]
                    # Reproducing part of env step to intercept Dones
                    assert all(action is not None for action in env.action.values())
                    done = env._take_action(name)
                    reward = env._compute_reward(name, done)
                    self.dones[name_and_num] = done
                    if done:
                        self.just_died.add(name_and_num)
                    if self.all_done:
                        env.step_result[name] = env._make_batched_step(
                            name, done, 0.0, reward
                        )
                        self.final_rewards[name].append(reward)
                        self.reset()
                    elif done:
                        # This agent has finished but others are still running.
                        # This gives a reward of the time penalty if this agent
                        # is successful and the negative env reward if it fails.
                        ceil_reward = min(-TIME_PENALTY, reward)
                        env.step_result[name] = env._make_batched_step(
                            name, done, ceil_reward, 0.0
                        )
                        self.final_rewards[name].append(reward)

                    else:
                        env.step_result[name] = env._make_batched_step(
                            name, done, reward, 0.0
                        )

    def reset(self) -> None:  # type: ignore
        for name in self.names:
            for i in range(self.num_agents):
                name_and_num = name + str(i)
                self.dones[name_and_num] = False

    @property
    def reset_parameters(self) -> Dict[str, str]:
        return {}

    def close(self):
        pass


class RecordEnvironment(SimpleEnvironment):
    def __init__(
        self,
        brain_names,
        step_size=0.2,
        num_visual=0,
        num_vector=1,
        action_sizes=(1, 0),
        n_demos=30,
    ):
        super().__init__(
            brain_names,
            step_size=step_size,
            num_visual=num_visual,
            num_vector=num_vector,
            action_sizes=action_sizes,
        )
        self.demonstration_protos: Dict[str, List[AgentInfoActionPairProto]] = {}
        self.n_demos = n_demos
        for name in self.names:
            self.demonstration_protos[name] = []

    def step(self) -> None:
        super().step()
        for name in self.names:
            discrete_actions = (
                self.action[name].discrete
                if self.action_spec.discrete_size > 0
                else None
            )
            continuous_actions = (
                self.action[name].continuous
                if self.action_spec.continuous_size > 0
                else None
            )
            self.demonstration_protos[name] += proto_from_steps_and_action(
                self.step_result[name][0],
                self.step_result[name][1],
                continuous_actions,
                discrete_actions,
            )
            self.demonstration_protos[name] = self.demonstration_protos[name][
                -self.n_demos :
            ]

    def solve(self) -> None:
        self.reset()
        for _ in range(self.n_demos):
            for name in self.names:
                if self.action_spec.discrete_size > 0:
                    self.action[name] = ActionTuple(
                        np.array([], dtype=np.float32),
                        np.array(
                            [[1]] if self.goal[name] > 0 else [[0]], dtype=np.int32
                        ),
                    )
                else:
                    self.action[name] = ActionTuple(
                        np.array([[float(self.goal[name])]], dtype=np.float32),
                        np.array([], dtype=np.int32),
                    )
            self.step()


class UnexpectedExceptionEnvironment(SimpleEnvironment):
    def __init__(self, brain_names, use_discrete, to_raise):
        super().__init__(brain_names, use_discrete)
        self.to_raise = to_raise

    def step(self) -> None:
        raise self.to_raise()