File size: 22,957 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import random
from typing import Dict, List, Any, Tuple
import numpy as np
from mlagents_envs.base_env import (
ActionSpec,
ObservationSpec,
ObservationType,
ActionTuple,
BaseEnv,
BehaviorSpec,
DecisionSteps,
TerminalSteps,
BehaviorMapping,
)
from .test_rpc_utils import proto_from_steps_and_action
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import (
AgentInfoActionPairProto,
)
from mlagents.trainers.tests.dummy_config import create_observation_specs_with_shapes
OBS_SIZE = 1
VIS_OBS_SIZE = (20, 20, 3)
VAR_LEN_SIZE = (10, 5)
STEP_SIZE = 0.2
TIME_PENALTY = 0.01
MIN_STEPS = int(1.0 / STEP_SIZE) + 1
SUCCESS_REWARD = 1.0 + MIN_STEPS * TIME_PENALTY
def clamp(x, min_val, max_val):
return max(min_val, min(x, max_val))
class SimpleEnvironment(BaseEnv):
"""
Very simple "game" - the agent has a position on [-1, 1], gets a reward of 1 if it reaches 1, and a reward of -1 if
it reaches -1. The position is incremented by the action amount (clamped to [-step_size, step_size]).
"""
def __init__(
self,
brain_names,
step_size=STEP_SIZE,
num_visual=0,
num_vector=1,
num_var_len=0,
vis_obs_size=VIS_OBS_SIZE,
vec_obs_size=OBS_SIZE,
var_len_obs_size=VAR_LEN_SIZE,
action_sizes=(1, 0),
goal_indices=None,
):
super().__init__()
self.num_visual = num_visual
self.num_vector = num_vector
self.num_var_len = num_var_len
self.vis_obs_size = vis_obs_size
self.vec_obs_size = vec_obs_size
self.var_len_obs_size = var_len_obs_size
self.goal_indices = goal_indices
continuous_action_size, discrete_action_size = action_sizes
discrete_tuple = tuple(2 for _ in range(discrete_action_size))
action_spec = ActionSpec(continuous_action_size, discrete_tuple)
self.total_action_size = (
continuous_action_size + discrete_action_size
) # to set the goals/positions
self.action_spec = action_spec
self.behavior_spec = BehaviorSpec(self._make_observation_specs(), action_spec)
self.action_spec = action_spec
self.names = brain_names
self.positions: Dict[str, List[float]] = {}
self.step_count: Dict[str, float] = {}
# Concatenate the arguments for a consistent random seed
seed = (
brain_names,
step_size,
num_visual,
num_vector,
num_var_len,
vis_obs_size,
vec_obs_size,
var_len_obs_size,
action_sizes,
)
self.random = random.Random(str(seed))
self.goal: Dict[str, int] = {}
self.action = {}
self.rewards: Dict[str, float] = {}
self.final_rewards: Dict[str, List[float]] = {}
self.step_result: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {}
self.agent_id: Dict[str, int] = {}
self.step_size = step_size # defines the difficulty of the test
# Allow to be used as a UnityEnvironment during tests
self.academy_capabilities = None
for name in self.names:
self.agent_id[name] = 0
self.goal[name] = self.random.choice([-1, 1])
self.rewards[name] = 0
self.final_rewards[name] = []
self._reset_agent(name)
self.action[name] = None
self.step_result[name] = None
def _make_observation_specs(self) -> List[ObservationSpec]:
obs_shape: List[Any] = []
for _ in range(self.num_vector):
obs_shape.append((self.vec_obs_size,))
for _ in range(self.num_visual):
obs_shape.append(self.vis_obs_size)
for _ in range(self.num_var_len):
obs_shape.append(self.var_len_obs_size)
obs_spec = create_observation_specs_with_shapes(obs_shape)
if self.goal_indices is not None:
for i in range(len(obs_spec)):
if i in self.goal_indices:
obs_spec[i] = ObservationSpec(
shape=obs_spec[i].shape,
dimension_property=obs_spec[i].dimension_property,
observation_type=ObservationType.GOAL_SIGNAL,
name=obs_spec[i].name,
)
return obs_spec
def _make_obs(self, value: float) -> List[np.ndarray]:
obs = []
for _ in range(self.num_vector):
obs.append(np.ones((1, self.vec_obs_size), dtype=np.float32) * value)
for _ in range(self.num_visual):
obs.append(np.ones((1,) + self.vis_obs_size, dtype=np.float32) * value)
for _ in range(self.num_var_len):
obs.append(np.ones((1,) + self.var_len_obs_size, dtype=np.float32) * value)
return obs
@property
def behavior_specs(self):
behavior_dict = {}
for n in self.names:
behavior_dict[n] = self.behavior_spec
return BehaviorMapping(behavior_dict)
def set_action_for_agent(self, behavior_name, agent_id, action):
pass
def set_actions(self, behavior_name, action):
self.action[behavior_name] = action
def get_steps(self, behavior_name):
return self.step_result[behavior_name]
def _take_action(self, name: str) -> bool:
deltas = []
_act = self.action[name]
if self.action_spec.continuous_size > 0:
for _cont in _act.continuous[0]:
deltas.append(_cont)
if self.action_spec.discrete_size > 0:
for _disc in _act.discrete[0]:
deltas.append(1 if _disc else -1)
for i, _delta in enumerate(deltas):
_delta = clamp(_delta, -self.step_size, self.step_size)
self.positions[name][i] += _delta
self.positions[name][i] = clamp(self.positions[name][i], -1, 1)
self.step_count[name] += 1
# Both must be in 1.0 to be done
done = all(pos >= 1.0 or pos <= -1.0 for pos in self.positions[name])
return done
def _generate_mask(self):
action_mask = None
if self.action_spec.discrete_size > 0:
# LL-Python API will return an empty dim if there is only 1 agent.
ndmask = np.array(
2 * self.action_spec.discrete_size * [False], dtype=np.bool
)
ndmask = np.expand_dims(ndmask, axis=0)
action_mask = [ndmask]
return action_mask
def _compute_reward(self, name: str, done: bool) -> float:
if done:
reward = 0.0
for _pos in self.positions[name]:
reward += (SUCCESS_REWARD * _pos * self.goal[name]) / len(
self.positions[name]
)
else:
reward = -TIME_PENALTY
return reward
def _reset_agent(self, name):
self.goal[name] = self.random.choice([-1, 1])
self.positions[name] = [0.0 for _ in range(self.total_action_size)]
self.step_count[name] = 0
self.rewards[name] = 0
self.agent_id[name] = self.agent_id[name] + 1
def _make_batched_step(
self, name: str, done: bool, reward: float, group_reward: float
) -> Tuple[DecisionSteps, TerminalSteps]:
m_vector_obs = self._make_obs(self.goal[name])
m_reward = np.array([reward], dtype=np.float32)
m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
m_group_id = np.array([0], dtype=np.int32)
m_group_reward = np.array([group_reward], dtype=np.float32)
action_mask = self._generate_mask()
decision_step = DecisionSteps(
m_vector_obs, m_reward, m_agent_id, action_mask, m_group_id, m_group_reward
)
terminal_step = TerminalSteps.empty(self.behavior_spec)
if done:
self.final_rewards[name].append(self.rewards[name])
self._reset_agent(name)
new_vector_obs = self._make_obs(self.goal[name])
(
new_reward,
new_done,
new_agent_id,
new_action_mask,
new_group_id,
new_group_reward,
) = self._construct_reset_step(name)
decision_step = DecisionSteps(
new_vector_obs,
new_reward,
new_agent_id,
new_action_mask,
new_group_id,
new_group_reward,
)
terminal_step = TerminalSteps(
m_vector_obs,
m_reward,
np.array([False], dtype=np.bool),
m_agent_id,
m_group_id,
m_group_reward,
)
return (decision_step, terminal_step)
def _construct_reset_step(
self, name: str
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
new_reward = np.array([0.0], dtype=np.float32)
new_done = np.array([False], dtype=np.bool)
new_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
new_action_mask = self._generate_mask()
new_group_id = np.array([0], dtype=np.int32)
new_group_reward = np.array([0.0], dtype=np.float32)
return (
new_reward,
new_done,
new_agent_id,
new_action_mask,
new_group_id,
new_group_reward,
)
def step(self) -> None:
assert all(action is not None for action in self.action.values())
for name in self.names:
done = self._take_action(name)
reward = self._compute_reward(name, done)
self.rewards[name] += reward
self.step_result[name] = self._make_batched_step(name, done, reward, 0.0)
def reset(self) -> None: # type: ignore
for name in self.names:
self._reset_agent(name)
self.step_result[name] = self._make_batched_step(name, False, 0.0, 0.0)
@property
def reset_parameters(self) -> Dict[str, str]:
return {}
def close(self):
pass
class MemoryEnvironment(SimpleEnvironment):
def __init__(self, brain_names, action_sizes=(1, 0), step_size=0.2):
super().__init__(brain_names, action_sizes=action_sizes, step_size=step_size)
# Number of steps to reveal the goal for. Lower is harder. Should be
# less than 1/step_size to force agent to use memory
self.num_show_steps = 2
def _make_batched_step(
self, name: str, done: bool, reward: float, group_reward: float
) -> Tuple[DecisionSteps, TerminalSteps]:
recurrent_obs_val = (
self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
)
m_vector_obs = self._make_obs(recurrent_obs_val)
m_reward = np.array([reward], dtype=np.float32)
m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
m_group_id = np.array([0], dtype=np.int32)
m_group_reward = np.array([group_reward], dtype=np.float32)
action_mask = self._generate_mask()
decision_step = DecisionSteps(
m_vector_obs, m_reward, m_agent_id, action_mask, m_group_id, m_group_reward
)
terminal_step = TerminalSteps.empty(self.behavior_spec)
if done:
self.final_rewards[name].append(self.rewards[name])
self._reset_agent(name)
recurrent_obs_val = (
self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
)
new_vector_obs = self._make_obs(recurrent_obs_val)
(
new_reward,
new_done,
new_agent_id,
new_action_mask,
new_group_id,
new_group_reward,
) = self._construct_reset_step(name)
decision_step = DecisionSteps(
new_vector_obs,
new_reward,
new_agent_id,
new_action_mask,
new_group_id,
new_group_reward,
)
terminal_step = TerminalSteps(
m_vector_obs,
m_reward,
np.array([False], dtype=np.bool),
m_agent_id,
m_group_id,
m_group_reward,
)
return (decision_step, terminal_step)
class MultiAgentEnvironment(BaseEnv):
"""
The MultiAgentEnvironment maintains a list of SimpleEnvironment, one for each agent.
When sending DecisionSteps and TerminalSteps to the trainers, it first batches the
decision steps from the individual environments. When setting actions, it indexes the
batched ActionTuple to obtain the ActionTuple for individual agents
"""
def __init__(
self,
brain_names,
step_size=STEP_SIZE,
num_visual=0,
num_vector=1,
num_var_len=0,
vis_obs_size=VIS_OBS_SIZE,
vec_obs_size=OBS_SIZE,
var_len_obs_size=VAR_LEN_SIZE,
action_sizes=(1, 0),
num_agents=2,
goal_indices=None,
):
super().__init__()
self.envs = {}
self.dones = {}
self.just_died = set()
self.names = brain_names
self.final_rewards: Dict[str, List[float]] = {}
for name in brain_names:
self.final_rewards[name] = []
for i in range(num_agents):
name_and_num = name + str(i)
self.envs[name_and_num] = SimpleEnvironment(
[name],
step_size,
num_visual,
num_vector,
num_var_len,
vis_obs_size,
vec_obs_size,
var_len_obs_size,
action_sizes,
goal_indices,
)
self.dones[name_and_num] = False
self.envs[name_and_num].reset()
# All envs have the same behavior spec, so just get the last one.
self.behavior_spec = self.envs[name_and_num].behavior_spec
self.action_spec = self.envs[name_and_num].action_spec
self.num_agents = num_agents
@property
def all_done(self):
return all(self.dones.values())
@property
def behavior_specs(self):
behavior_dict = {}
for n in self.names:
behavior_dict[n] = self.behavior_spec
return BehaviorMapping(behavior_dict)
def set_action_for_agent(self, behavior_name, agent_id, action):
pass
def set_actions(self, behavior_name, action):
# The ActionTuple contains the actions for all n_agents. This
# slices the ActionTuple into an action tuple for each environment
# and sets it. The index j is used to ignore agents that have already
# reached done.
j = 0
for i in range(self.num_agents):
_act = ActionTuple()
name_and_num = behavior_name + str(i)
env = self.envs[name_and_num]
if not self.dones[name_and_num]:
if self.action_spec.continuous_size > 0:
_act.add_continuous(action.continuous[j : j + 1])
if self.action_spec.discrete_size > 0:
_disc_list = [action.discrete[j, :]]
_act.add_discrete(np.array(_disc_list))
j += 1
env.action[behavior_name] = _act
def get_steps(self, behavior_name):
# This gets the individual DecisionSteps and TerminalSteps
# from the envs and merges them into a batch to be sent
# to the AgentProcessor.
dec_vec_obs = []
dec_reward = []
dec_group_reward = []
dec_agent_id = []
dec_group_id = []
ter_vec_obs = []
ter_reward = []
ter_group_reward = []
ter_agent_id = []
ter_group_id = []
interrupted = []
action_mask = None
terminal_step = TerminalSteps.empty(self.behavior_spec)
decision_step = None
for i in range(self.num_agents):
name_and_num = behavior_name + str(i)
env = self.envs[name_and_num]
_dec, _term = env.step_result[behavior_name]
if not self.dones[name_and_num]:
dec_agent_id.append(i)
dec_group_id.append(1)
if len(dec_vec_obs) > 0:
for j, obs in enumerate(_dec.obs):
dec_vec_obs[j] = np.concatenate((dec_vec_obs[j], obs), axis=0)
else:
for obs in _dec.obs:
dec_vec_obs.append(obs)
dec_reward.append(_dec.reward[0])
dec_group_reward.append(_dec.group_reward[0])
if _dec.action_mask is not None:
if action_mask is None:
action_mask = []
if len(action_mask) > 0:
action_mask[0] = np.concatenate(
(action_mask[0], _dec.action_mask[0]), axis=0
)
else:
action_mask.append(_dec.action_mask[0])
if len(_term.reward) > 0 and name_and_num in self.just_died:
ter_agent_id.append(i)
ter_group_id.append(1)
if len(ter_vec_obs) > 0:
for j, obs in enumerate(_term.obs):
ter_vec_obs[j] = np.concatenate((ter_vec_obs[j], obs), axis=0)
else:
for obs in _term.obs:
ter_vec_obs.append(obs)
ter_reward.append(_term.reward[0])
ter_group_reward.append(_term.group_reward[0])
interrupted.append(False)
self.just_died.remove(name_and_num)
decision_step = DecisionSteps(
dec_vec_obs,
dec_reward,
dec_agent_id,
action_mask,
dec_group_id,
dec_group_reward,
)
terminal_step = TerminalSteps(
ter_vec_obs,
ter_reward,
interrupted,
ter_agent_id,
ter_group_id,
ter_group_reward,
)
return (decision_step, terminal_step)
def step(self) -> None:
# Steps all environments and calls reset if all agents are done.
for name in self.names:
for i in range(self.num_agents):
name_and_num = name + str(i)
# Does not step the env if done
if not self.dones[name_and_num]:
env = self.envs[name_and_num]
# Reproducing part of env step to intercept Dones
assert all(action is not None for action in env.action.values())
done = env._take_action(name)
reward = env._compute_reward(name, done)
self.dones[name_and_num] = done
if done:
self.just_died.add(name_and_num)
if self.all_done:
env.step_result[name] = env._make_batched_step(
name, done, 0.0, reward
)
self.final_rewards[name].append(reward)
self.reset()
elif done:
# This agent has finished but others are still running.
# This gives a reward of the time penalty if this agent
# is successful and the negative env reward if it fails.
ceil_reward = min(-TIME_PENALTY, reward)
env.step_result[name] = env._make_batched_step(
name, done, ceil_reward, 0.0
)
self.final_rewards[name].append(reward)
else:
env.step_result[name] = env._make_batched_step(
name, done, reward, 0.0
)
def reset(self) -> None: # type: ignore
for name in self.names:
for i in range(self.num_agents):
name_and_num = name + str(i)
self.dones[name_and_num] = False
@property
def reset_parameters(self) -> Dict[str, str]:
return {}
def close(self):
pass
class RecordEnvironment(SimpleEnvironment):
def __init__(
self,
brain_names,
step_size=0.2,
num_visual=0,
num_vector=1,
action_sizes=(1, 0),
n_demos=30,
):
super().__init__(
brain_names,
step_size=step_size,
num_visual=num_visual,
num_vector=num_vector,
action_sizes=action_sizes,
)
self.demonstration_protos: Dict[str, List[AgentInfoActionPairProto]] = {}
self.n_demos = n_demos
for name in self.names:
self.demonstration_protos[name] = []
def step(self) -> None:
super().step()
for name in self.names:
discrete_actions = (
self.action[name].discrete
if self.action_spec.discrete_size > 0
else None
)
continuous_actions = (
self.action[name].continuous
if self.action_spec.continuous_size > 0
else None
)
self.demonstration_protos[name] += proto_from_steps_and_action(
self.step_result[name][0],
self.step_result[name][1],
continuous_actions,
discrete_actions,
)
self.demonstration_protos[name] = self.demonstration_protos[name][
-self.n_demos :
]
def solve(self) -> None:
self.reset()
for _ in range(self.n_demos):
for name in self.names:
if self.action_spec.discrete_size > 0:
self.action[name] = ActionTuple(
np.array([], dtype=np.float32),
np.array(
[[1]] if self.goal[name] > 0 else [[0]], dtype=np.int32
),
)
else:
self.action[name] = ActionTuple(
np.array([[float(self.goal[name])]], dtype=np.float32),
np.array([], dtype=np.int32),
)
self.step()
class UnexpectedExceptionEnvironment(SimpleEnvironment):
def __init__(self, brain_names, use_discrete, to_raise):
super().__init__(brain_names, use_discrete)
self.to_raise = to_raise
def step(self) -> None:
raise self.to_raise()
|