File size: 22,194 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
import attr
import cattr
import pickle
import pytest
import yaml
from typing import Dict, List, Optional
from mlagents.trainers.settings import (
RunOptions,
TrainerSettings,
NetworkSettings,
RewardSignalType,
RewardSignalSettings,
CuriositySettings,
EnvironmentSettings,
EnvironmentParameterSettings,
ConstantSettings,
UniformSettings,
GaussianSettings,
MultiRangeUniformSettings,
deep_update_dict,
strict_to_cls,
ScheduleType,
)
from mlagents.trainers.ppo.trainer import PPOSettings, TRAINER_NAME as PPO_TRAINER_NAME
from mlagents.trainers.sac.trainer import SACSettings, TRAINER_NAME as SAC_TRAINER_NAME
from mlagents.trainers.exception import TrainerConfigError
TRAINER_SETTING_TYPES = {"ppo": PPOSettings, "sac": SACSettings}
def check_if_different(testobj1: object, testobj2: object) -> None:
assert testobj1 is not testobj2
if attr.has(testobj1.__class__) and attr.has(testobj2.__class__):
for key, val in attr.asdict(testobj1, recurse=False).items():
if (
isinstance(val, dict) or isinstance(val, list) or attr.has(val)
) and val != {}:
# Note: this check doesn't check the contents of mutables.
check_if_different(val, attr.asdict(testobj2, recurse=False)[key])
def check_dict_is_at_least(
testdict1: Dict, testdict2: Dict, exceptions: Optional[List[str]] = None
) -> None:
"""
Check if everything present in the 1st dict is the same in the second dict.
Excludes things that the second dict has but is not present in the heirarchy of the
1st dict. Used to compare an underspecified config dict structure (e.g. as
would be provided by a user) with a complete one (e.g. as exported by RunOptions).
"""
for key, val in testdict1.items():
if exceptions is not None and key in exceptions:
continue
assert key in testdict2
if isinstance(val, dict):
check_dict_is_at_least(val, testdict2[key])
elif isinstance(val, list):
assert isinstance(testdict2[key], list)
for _el0, _el1 in zip(val, testdict2[key]):
if isinstance(_el0, dict):
check_dict_is_at_least(_el0, _el1)
else:
assert val == testdict2[key]
else: # If not a dict, don't recurse into it
assert val == testdict2[key]
def test_is_new_instance():
"""
Verify that every instance of RunOptions() and its subclasses
is a new instance (i.e. all factory methods are used properly.)
"""
check_if_different(RunOptions(), RunOptions())
check_if_different(TrainerSettings(), TrainerSettings())
def test_no_configuration():
"""
Verify that a new config will have a PPO trainer with extrinsic rewards.
"""
blank_runoptions = RunOptions()
blank_runoptions.behaviors.set_config_specified(False)
assert isinstance(blank_runoptions.behaviors["test"], TrainerSettings)
assert isinstance(blank_runoptions.behaviors["test"].hyperparameters, PPOSettings)
assert (
RewardSignalType.EXTRINSIC in blank_runoptions.behaviors["test"].reward_signals
)
def test_strict_to_cls():
"""
Test strict structuring method.
"""
@attr.s(auto_attribs=True)
class TestAttrsClass:
field1: int = 0
field2: str = "test"
correct_dict = {"field1": 1, "field2": "test2"}
assert strict_to_cls(correct_dict, TestAttrsClass) == TestAttrsClass(**correct_dict)
incorrect_dict = {"field3": 1, "field2": "test2"}
with pytest.raises(TrainerConfigError):
strict_to_cls(incorrect_dict, TestAttrsClass)
with pytest.raises(TrainerConfigError):
strict_to_cls("non_dict_input", TestAttrsClass)
def test_deep_update_dict():
dict1 = {"a": 1, "b": 2, "c": {"d": 3}}
dict2 = {"a": 2, "c": {"d": 4, "e": 5}}
deep_update_dict(dict1, dict2)
assert dict1 == {"a": 2, "b": 2, "c": {"d": 4, "e": 5}}
def test_trainersettings_structure():
"""
Test structuring method for TrainerSettings
"""
trainersettings_dict = {
"trainer_type": SAC_TRAINER_NAME,
"hyperparameters": {"batch_size": 1024},
"max_steps": 1.0,
"reward_signals": {"curiosity": {"encoding_size": 64}},
}
trainer_settings = TrainerSettings.structure(trainersettings_dict, TrainerSettings)
# check_trainer_setting_types([trainer_settings], TRAINER_SETTING_TYPES)
assert isinstance(trainer_settings.hyperparameters, SACSettings)
assert trainer_settings.trainer_type == SAC_TRAINER_NAME
assert isinstance(trainer_settings.max_steps, int)
assert RewardSignalType.CURIOSITY in trainer_settings.reward_signals
# Check invalid trainer type
with pytest.raises(TrainerConfigError):
trainersettings_dict = {
"trainer_type": "puppo",
"hyperparameters": {"batch_size": 1024},
"max_steps": 1.0,
}
TrainerSettings.structure(trainersettings_dict, TrainerSettings)
# Check invalid hyperparameter
with pytest.raises(TrainerConfigError):
trainersettings_dict = {
"trainer_type": PPO_TRAINER_NAME,
"hyperparameters": {"notahyperparam": 1024},
"max_steps": 1.0,
}
TrainerSettings.structure(trainersettings_dict, TrainerSettings)
# Check non-dict
with pytest.raises(TrainerConfigError):
TrainerSettings.structure("notadict", TrainerSettings)
# Check hyperparameters specified but trainer type left as default.
# This shouldn't work as you could specify non-PPO hyperparameters.
with pytest.raises(TrainerConfigError):
trainersettings_dict = {"hyperparameters": {"batch_size": 1024}}
TrainerSettings.structure(trainersettings_dict, TrainerSettings)
def test_trainersettingsschedules_structure():
"""
Test structuring method for Trainer Settings Schedule
"""
trainersettings_dict = {
"trainer_type": PPO_TRAINER_NAME,
"hyperparameters": {
"learning_rate_schedule": "linear",
"beta_schedule": "constant",
},
}
trainer_settings = TrainerSettings.structure(trainersettings_dict, TrainerSettings)
assert isinstance(trainer_settings.hyperparameters, PPOSettings)
assert (
trainer_settings.hyperparameters.learning_rate_schedule == ScheduleType.LINEAR
)
assert trainer_settings.hyperparameters.beta_schedule == ScheduleType.CONSTANT
assert trainer_settings.hyperparameters.epsilon_schedule == ScheduleType.LINEAR
def test_even_checkpoints_structure():
"""
Test structuring for even checkpoints
"""
trainersettings_dict = {
"trainer_type": PPO_TRAINER_NAME,
"keep_checkpoints": 2,
"even_checkpoints": True,
"max_steps": 100.0,
}
trainer_settings = TrainerSettings.structure(trainersettings_dict, TrainerSettings)
assert isinstance(trainer_settings.hyperparameters, PPOSettings)
assert trainer_settings.checkpoint_interval == 50
def test_default_checkpoint_interval_structure():
"""
Test structuring for even checkpoints
"""
trainersettings_dict = {
"trainer_type": PPO_TRAINER_NAME,
"keep_checkpoints": 2,
"max_steps": 100.0,
}
trainer_settings = TrainerSettings.structure(trainersettings_dict, TrainerSettings)
assert isinstance(trainer_settings.hyperparameters, PPOSettings)
assert trainer_settings.checkpoint_interval == 500000
def test_reward_signal_structure():
"""
Tests the RewardSignalSettings structure method. This one is special b/c
it takes in a Dict[RewardSignalType, RewardSignalSettings].
"""
reward_signals_dict = {
"extrinsic": {"strength": 1.0},
"curiosity": {"strength": 1.0},
}
reward_signals = RewardSignalSettings.structure(
reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings]
)
assert isinstance(reward_signals[RewardSignalType.EXTRINSIC], RewardSignalSettings)
assert isinstance(reward_signals[RewardSignalType.CURIOSITY], CuriositySettings)
# Check invalid reward signal type
reward_signals_dict = {"puppo": {"strength": 1.0}}
with pytest.raises(ValueError):
RewardSignalSettings.structure(
reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings]
)
# Check missing GAIL demo path
reward_signals_dict = {"gail": {"strength": 1.0}}
with pytest.raises(TypeError):
RewardSignalSettings.structure(
reward_signals_dict, Dict[RewardSignalType, RewardSignalSettings]
)
# Check non-Dict input
with pytest.raises(TrainerConfigError):
RewardSignalSettings.structure(
"notadict", Dict[RewardSignalType, RewardSignalSettings]
)
def test_memory_settings_validation():
with pytest.raises(TrainerConfigError):
NetworkSettings.MemorySettings(sequence_length=128, memory_size=63)
with pytest.raises(TrainerConfigError):
NetworkSettings.MemorySettings(sequence_length=128, memory_size=0)
def test_env_parameter_structure():
"""
Tests the EnvironmentParameterSettings structure method and all validators.
"""
env_params_dict = {
"mass": {
"sampler_type": "uniform",
"sampler_parameters": {"min_value": 1.0, "max_value": 2.0},
},
"scale": {
"sampler_type": "gaussian",
"sampler_parameters": {"mean": 1.0, "st_dev": 2.0},
},
"length": {
"sampler_type": "multirangeuniform",
"sampler_parameters": {"intervals": [[1.0, 2.0], [3.0, 4.0]]},
},
"gravity": 1,
"wall_height": {
"curriculum": [
{
"name": "Lesson1",
"completion_criteria": {
"measure": "reward",
"behavior": "fake_behavior",
"threshold": 10,
},
"value": 1,
},
{"value": 4, "name": "Lesson2"},
]
},
}
env_param_settings = EnvironmentParameterSettings.structure(
env_params_dict, Dict[str, EnvironmentParameterSettings]
)
assert isinstance(env_param_settings["mass"].curriculum[0].value, UniformSettings)
assert isinstance(env_param_settings["scale"].curriculum[0].value, GaussianSettings)
assert isinstance(
env_param_settings["length"].curriculum[0].value, MultiRangeUniformSettings
)
# Check __str__ is correct
assert (
str(env_param_settings["mass"].curriculum[0].value)
== "Uniform sampler: min=1.0, max=2.0"
)
assert (
str(env_param_settings["scale"].curriculum[0].value)
== "Gaussian sampler: mean=1.0, stddev=2.0"
)
assert (
str(env_param_settings["length"].curriculum[0].value)
== "MultiRangeUniform sampler: intervals=[(1.0, 2.0), (3.0, 4.0)]"
)
assert str(env_param_settings["gravity"].curriculum[0].value) == "Float: value=1"
assert isinstance(
env_param_settings["wall_height"].curriculum[0].value, ConstantSettings
)
assert isinstance(
env_param_settings["wall_height"].curriculum[1].value, ConstantSettings
)
# Check invalid distribution type
invalid_distribution_dict = {
"mass": {
"sampler_type": "beta",
"sampler_parameters": {"alpha": 1.0, "beta": 2.0},
}
}
with pytest.raises(ValueError):
EnvironmentParameterSettings.structure(
invalid_distribution_dict, Dict[str, EnvironmentParameterSettings]
)
# Check min less than max in uniform
invalid_distribution_dict = {
"mass": {
"sampler_type": "uniform",
"sampler_parameters": {"min_value": 2.0, "max_value": 1.0},
}
}
with pytest.raises(TrainerConfigError):
EnvironmentParameterSettings.structure(
invalid_distribution_dict, Dict[str, EnvironmentParameterSettings]
)
# Check min less than max in multirange
invalid_distribution_dict = {
"mass": {
"sampler_type": "multirangeuniform",
"sampler_parameters": {"intervals": [[2.0, 1.0]]},
}
}
with pytest.raises(TrainerConfigError):
EnvironmentParameterSettings.structure(
invalid_distribution_dict, Dict[str, EnvironmentParameterSettings]
)
# Check multirange has valid intervals
invalid_distribution_dict = {
"mass": {
"sampler_type": "multirangeuniform",
"sampler_parameters": {"intervals": [[1.0, 2.0], [3.0]]},
}
}
with pytest.raises(TrainerConfigError):
EnvironmentParameterSettings.structure(
invalid_distribution_dict, Dict[str, EnvironmentParameterSettings]
)
# Check non-Dict input
with pytest.raises(TrainerConfigError):
EnvironmentParameterSettings.structure(
"notadict", Dict[str, EnvironmentParameterSettings]
)
invalid_curriculum_dict = {
"wall_height": {
"curriculum": [
{
"name": "Lesson1",
"completion_criteria": {
"measure": "progress",
"behavior": "fake_behavior",
"threshold": 10,
}, # > 1 is too large
"value": 1,
},
{"value": 4, "name": "Lesson2"},
]
}
}
with pytest.raises(TrainerConfigError):
EnvironmentParameterSettings.structure(
invalid_curriculum_dict, Dict[str, EnvironmentParameterSettings]
)
@pytest.mark.parametrize("use_defaults", [True, False])
def test_exportable_settings(use_defaults):
"""
Test that structuring and unstructuring a RunOptions object results in the same
configuration representation.
"""
# Try to enable as many features as possible in this test YAML to hit all the
# edge cases. Set as much as possible as non-default values to ensure no flukes.
test_yaml = """
behaviors:
3DBall:
trainer_type: sac
hyperparameters:
learning_rate: 0.0004
learning_rate_schedule: constant
batch_size: 64
buffer_size: 200000
buffer_init_steps: 100
tau: 0.006
steps_per_update: 10.0
save_replay_buffer: true
init_entcoef: 0.5
reward_signal_steps_per_update: 10.0
network_settings:
deterministic: true
normalize: false
hidden_units: 256
num_layers: 3
vis_encode_type: nature_cnn
memory:
memory_size: 1288
sequence_length: 12
reward_signals:
extrinsic:
gamma: 0.999
strength: 1.0
curiosity:
gamma: 0.999
strength: 1.0
keep_checkpoints: 5
max_steps: 500000
time_horizon: 1000
summary_freq: 12000
checkpoint_interval: 1
threaded: true
env_settings:
env_path: test_env_path
env_args:
- test_env_args1
- test_env_args2
base_port: 12345
num_envs: 8
num_areas: 8
seed: 12345
engine_settings:
width: 12345
height: 12345
quality_level: 12345
time_scale: 12345
target_frame_rate: 12345
capture_frame_rate: 12345
no_graphics: true
checkpoint_settings:
run_id: test_run_id
initialize_from: test_directory
load_model: false
resume: true
force: true
train_model: false
inference: false
debug: true
environment_parameters:
big_wall_height:
curriculum:
- name: Lesson0
completion_criteria:
measure: progress
behavior: BigWallJump
signal_smoothing: true
min_lesson_length: 100
threshold: 0.1
value:
sampler_type: uniform
sampler_parameters:
min_value: 0.0
max_value: 4.0
- name: Lesson1
completion_criteria:
measure: reward
behavior: BigWallJump
signal_smoothing: true
min_lesson_length: 100
threshold: 0.2
value:
sampler_type: gaussian
sampler_parameters:
mean: 4.0
st_dev: 7.0
- name: Lesson2
completion_criteria:
measure: progress
behavior: BigWallJump
signal_smoothing: true
min_lesson_length: 20
threshold: 0.3
value:
sampler_type: multirangeuniform
sampler_parameters:
intervals: [[1.0, 2.0],[4.0, 5.0]]
- name: Lesson3
value: 8.0
small_wall_height: 42.0
other_wall_height:
sampler_type: multirangeuniform
sampler_parameters:
intervals: [[1.0, 2.0],[4.0, 5.0]]
"""
if not use_defaults:
loaded_yaml = yaml.safe_load(test_yaml)
run_options = RunOptions.from_dict(yaml.safe_load(test_yaml))
else:
run_options = RunOptions()
dict_export = run_options.as_dict()
if not use_defaults: # Don't need to check if no yaml
check_dict_is_at_least(
loaded_yaml, dict_export, exceptions=["environment_parameters"]
)
# Re-import and verify has same elements
run_options2 = RunOptions.from_dict(dict_export)
second_export = run_options2.as_dict()
check_dict_is_at_least(dict_export, second_export)
# Should be able to use equality instead of back-and-forth once environment_parameters
# is working
check_dict_is_at_least(second_export, dict_export)
# Check that the two exports are the same
assert dict_export == second_export
# check if cehckpoint_settings priorotizes resume over initialize from
run_options2.checkpoint_settings.prioritize_resume_init()
assert run_options2.checkpoint_settings.initialize_from is None
def test_environment_settings():
# default args
EnvironmentSettings()
# 1 env is OK if no env_path
EnvironmentSettings(num_envs=1)
# 2 areas are OK
EnvironmentSettings(num_areas=2)
# multiple envs is OK if env_path is set
EnvironmentSettings(num_envs=42, env_path="/foo/bar.exe")
# Multiple environments with no env_path is an error
with pytest.raises(ValueError):
EnvironmentSettings(num_envs=2)
def test_default_settings():
# Make default settings, one nested and one not.
default_settings = {
"max_steps": 1,
"network_settings": {"num_layers": 1000, "deterministic": True},
}
behaviors = {"test1": {"max_steps": 2, "network_settings": {"hidden_units": 2000}}}
run_options_dict = {"default_settings": default_settings, "behaviors": behaviors}
run_options = RunOptions.from_dict(run_options_dict)
# Check that a new behavior has the default settings
default_settings_cls = cattr.structure(default_settings, TrainerSettings)
check_if_different(default_settings_cls, run_options.behaviors["test2"])
# Check that an existing behavior overrides the defaults in specified fields
test1_settings = run_options.behaviors["test1"]
assert test1_settings.max_steps == 2
assert test1_settings.network_settings.hidden_units == 2000
assert test1_settings.network_settings.deterministic is True
assert test1_settings.network_settings.num_layers == 1000
# Change the overridden fields back, and check if the rest are equal.
test1_settings.max_steps = 1
test1_settings.network_settings.hidden_units = (
default_settings_cls.network_settings.hidden_units
)
check_if_different(test1_settings, default_settings_cls)
def test_config_specified():
# Test require all behavior names to be specified (or not)
# Remove any pre-set defaults
TrainerSettings.default_override = None
behaviors = {"test1": {"max_steps": 2, "network_settings": {"hidden_units": 2000}}}
run_options_dict = {"behaviors": behaviors}
ro = RunOptions.from_dict(run_options_dict)
# Don't require all behavior names
ro.behaviors.set_config_specified(False)
# Test that we can grab an entry that is not in the dict.
assert isinstance(ro.behaviors["test2"], TrainerSettings)
# Create strict RunOptions with no defualt_settings
run_options_dict = {"behaviors": behaviors}
ro = RunOptions.from_dict(run_options_dict)
# Require all behavior names
ro.behaviors.set_config_specified(True)
with pytest.raises(TrainerConfigError):
# Variable must be accessed otherwise Python won't query the dict
print(ro.behaviors["test2"])
# Create strict RunOptions with default settings
default_settings = {"max_steps": 1, "network_settings": {"num_layers": 1000}}
run_options_dict = {"default_settings": default_settings, "behaviors": behaviors}
ro = RunOptions.from_dict(run_options_dict)
# Require all behavior names
ro.behaviors.set_config_specified(True)
# Test that we can grab an entry that is not in the dict.
assert isinstance(ro.behaviors["test2"], TrainerSettings)
def test_pickle():
# Make sure RunOptions is pickle-able.
run_options = RunOptions()
p = pickle.dumps(run_options)
pickle.loads(p)
|