File size: 5,796 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import pytest

from mlagents.torch_utils import torch
from mlagents.trainers.torch_entities.action_model import ActionModel, DistInstances
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.torch_entities.distributions import (
    GaussianDistInstance,
    CategoricalDistInstance,
)

from mlagents_envs.base_env import ActionSpec


def create_action_model(inp_size, act_size, deterministic=False):
    mask = torch.ones([1, act_size**2])
    action_spec = ActionSpec(act_size, tuple(act_size for _ in range(act_size)))
    action_model = ActionModel(inp_size, action_spec, deterministic=deterministic)
    return action_model, mask


def test_get_dists():
    inp_size = 4
    act_size = 2
    action_model, masks = create_action_model(inp_size, act_size)
    sample_inp = torch.ones((1, inp_size))
    dists = action_model._get_dists(sample_inp, masks=masks)
    assert isinstance(dists.continuous, GaussianDistInstance)
    assert len(dists.discrete) == 2
    for _dist in dists.discrete:
        assert isinstance(_dist, CategoricalDistInstance)


def test_sample_action():
    inp_size = 4
    act_size = 2
    action_model, masks = create_action_model(inp_size, act_size)
    sample_inp = torch.ones((1, inp_size))
    dists = action_model._get_dists(sample_inp, masks=masks)
    agent_action = action_model._sample_action(dists)
    assert agent_action.continuous_tensor.shape == (1, 2)
    assert len(agent_action.discrete_list) == 2
    for _disc in agent_action.discrete_list:
        assert _disc.shape == (1, 1)


def test_deterministic_sample_action():
    inp_size = 4
    act_size = 8
    action_model, masks = create_action_model(inp_size, act_size, deterministic=True)
    sample_inp = torch.ones((1, inp_size))
    dists = action_model._get_dists(sample_inp, masks=masks)
    agent_action1 = action_model._sample_action(dists)
    agent_action2 = action_model._sample_action(dists)
    agent_action3 = action_model._sample_action(dists)

    assert torch.equal(agent_action1.continuous_tensor, agent_action2.continuous_tensor)
    assert torch.equal(agent_action1.continuous_tensor, agent_action3.continuous_tensor)
    assert torch.equal(agent_action1.discrete_tensor, agent_action2.discrete_tensor)
    assert torch.equal(agent_action1.discrete_tensor, agent_action3.discrete_tensor)

    action_model, masks = create_action_model(inp_size, act_size, deterministic=False)
    sample_inp = torch.ones((1, inp_size))
    dists = action_model._get_dists(sample_inp, masks=masks)
    agent_action1 = action_model._sample_action(dists)
    agent_action2 = action_model._sample_action(dists)
    agent_action3 = action_model._sample_action(dists)

    assert not torch.equal(
        agent_action1.continuous_tensor, agent_action2.continuous_tensor
    )

    assert not torch.equal(
        agent_action1.continuous_tensor, agent_action3.continuous_tensor
    )

    chance_counter = 0
    if not torch.equal(agent_action1.discrete_tensor, agent_action2.discrete_tensor):
        chance_counter += 1
    if not torch.equal(agent_action1.discrete_tensor, agent_action3.discrete_tensor):
        chance_counter += 1
    if not torch.equal(agent_action2.discrete_tensor, agent_action3.discrete_tensor):
        chance_counter += 1

    assert chance_counter > 1


def test_get_probs_and_entropy():
    inp_size = 4
    act_size = 2
    action_model, masks = create_action_model(inp_size, act_size)

    _continuous_dist = GaussianDistInstance(torch.zeros((1, 2)), torch.ones((1, 2)))
    act_size = 2
    test_prob = torch.tensor([[1.0 - 0.1 * (act_size - 1)] + [0.1] * (act_size - 1)])
    _discrete_dist_list = [
        CategoricalDistInstance(test_prob),
        CategoricalDistInstance(test_prob),
    ]
    dist_tuple = DistInstances(_continuous_dist, _discrete_dist_list)

    agent_action = AgentAction(
        torch.zeros((1, 2)), [torch.tensor([0]), torch.tensor([1])]
    )

    log_probs, entropies = action_model._get_probs_and_entropy(agent_action, dist_tuple)

    assert log_probs.continuous_tensor.shape == (1, 2)
    assert len(log_probs.discrete_list) == 2
    for _disc in log_probs.discrete_list:
        assert _disc.shape == (1,)
    assert len(log_probs.all_discrete_list) == 2
    for _disc in log_probs.all_discrete_list:
        assert _disc.shape == (1, 2)

    for clp in log_probs.continuous_tensor[0].tolist():
        # Log prob of standard normal at 0
        assert clp == pytest.approx(-0.919, abs=0.01)

    assert log_probs.discrete_list[0] > log_probs.discrete_list[1]

    for ent, val in zip(entropies[0].tolist(), [1.4189, 0.6191, 0.6191]):
        assert ent == pytest.approx(val, abs=0.01)


def test_get_onnx_deterministic_tensors():
    inp_size = 4
    act_size = 2
    action_model, masks = create_action_model(inp_size, act_size)
    sample_inp = torch.ones((1, inp_size))
    out_tensors = action_model.get_action_out(sample_inp, masks=masks)
    (
        continuous_out,
        discrete_out,
        action_out_deprecated,
        deterministic_continuous_out,
        deterministic_discrete_out,
    ) = out_tensors
    assert continuous_out.shape == (1, 2)
    assert discrete_out.shape == (1, 2)
    assert deterministic_discrete_out.shape == (1, 2)
    assert deterministic_continuous_out.shape == (1, 2)

    # Second sampling from same distribution
    out_tensors2 = action_model.get_action_out(sample_inp, masks=masks)
    (
        continuous_out_2,
        discrete_out_2,
        action_out_2_deprecated,
        deterministic_continuous_out_2,
        deterministic_discrete_out_2,
    ) = out_tensors2
    assert ~torch.all(torch.eq(continuous_out, continuous_out_2))
    assert torch.all(
        torch.eq(deterministic_continuous_out, deterministic_continuous_out_2)
    )