File size: 11,931 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from mlagents.torch_utils import torch
import warnings
from typing import Tuple, Optional, List
from mlagents.trainers.torch_entities.layers import (
LinearEncoder,
Initialization,
linear_layer,
LayerNorm,
)
from mlagents.trainers.torch_entities.model_serialization import exporting_to_onnx
from mlagents.trainers.exception import UnityTrainerException
def get_zero_entities_mask(entities: List[torch.Tensor]) -> List[torch.Tensor]:
"""
Takes a List of Tensors and returns a List of mask Tensor with 1 if the input was
all zeros (on dimension 2) and 0 otherwise. This is used in the Attention
layer to mask the padding observations.
"""
with torch.no_grad():
if exporting_to_onnx.is_exporting():
with warnings.catch_warnings():
# We ignore a TracerWarning from PyTorch that warns that doing
# shape[n].item() will cause the trace to be incorrect (the trace might
# not generalize to other inputs)
# We ignore this warning because we know the model will always be
# run with inputs of the same shape
warnings.simplefilter("ignore")
# When exporting to ONNX, we want to transpose the entities. This is
# because ONNX only support input in NCHW (channel first) format.
# Barracuda also expect to get data in NCHW.
entities = [
torch.transpose(obs, 2, 1).reshape(
-1, obs.shape[1].item(), obs.shape[2].item()
)
for obs in entities
]
# Generate the masking tensors for each entities tensor (mask only if all zeros)
key_masks: List[torch.Tensor] = [
(torch.sum(ent**2, axis=2) < 0.01).float() for ent in entities
]
return key_masks
class MultiHeadAttention(torch.nn.Module):
NEG_INF = -1e6
def __init__(self, embedding_size: int, num_heads: int):
"""
Multi Head Attention module. We do not use the regular Torch implementation since
Barracuda does not support some operators it uses.
Takes as input to the forward method 3 tensors:
- query: of dimensions (batch_size, number_of_queries, embedding_size)
- key: of dimensions (batch_size, number_of_keys, embedding_size)
- value: of dimensions (batch_size, number_of_keys, embedding_size)
The forward method will return 2 tensors:
- The output: (batch_size, number_of_queries, embedding_size)
- The attention matrix: (batch_size, num_heads, number_of_queries, number_of_keys)
:param embedding_size: The size of the embeddings that will be generated (should be
dividable by the num_heads)
:param total_max_elements: The maximum total number of entities that can be passed to
the module
:param num_heads: The number of heads of the attention module
"""
super().__init__()
self.n_heads = num_heads
self.head_size: int = embedding_size // self.n_heads
self.embedding_size: int = self.head_size * self.n_heads
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_q: int,
n_k: int,
key_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
b = -1 # the batch size
query = query.reshape(
b, n_q, self.n_heads, self.head_size
) # (b, n_q, h, emb / h)
key = key.reshape(b, n_k, self.n_heads, self.head_size) # (b, n_k, h, emb / h)
value = value.reshape(
b, n_k, self.n_heads, self.head_size
) # (b, n_k, h, emb / h)
query = query.permute([0, 2, 1, 3]) # (b, h, n_q, emb / h)
# The next few lines are equivalent to : key.permute([0, 2, 3, 1])
# This is a hack, ONNX will compress two permute operations and
# Barracuda will not like seeing `permute([0,2,3,1])`
key = key.permute([0, 2, 1, 3]) # (b, h, emb / h, n_k)
key -= 1
key += 1
key = key.permute([0, 1, 3, 2]) # (b, h, emb / h, n_k)
qk = torch.matmul(query, key) # (b, h, n_q, n_k)
if key_mask is None:
qk = qk / (self.embedding_size**0.5)
else:
key_mask = key_mask.reshape(b, 1, 1, n_k)
qk = (1 - key_mask) * qk / (
self.embedding_size**0.5
) + key_mask * self.NEG_INF
att = torch.softmax(qk, dim=3) # (b, h, n_q, n_k)
value = value.permute([0, 2, 1, 3]) # (b, h, n_k, emb / h)
value_attention = torch.matmul(att, value) # (b, h, n_q, emb / h)
value_attention = value_attention.permute([0, 2, 1, 3]) # (b, n_q, h, emb / h)
value_attention = value_attention.reshape(
b, n_q, self.embedding_size
) # (b, n_q, emb)
return value_attention, att
class EntityEmbedding(torch.nn.Module):
"""
A module used to embed entities before passing them to a self-attention block.
Used in conjunction with ResidualSelfAttention to encode information about a self
and additional entities. Can also concatenate self to entities for ego-centric self-
attention. Inspired by architecture used in https://arxiv.org/pdf/1909.07528.pdf.
"""
def __init__(
self,
entity_size: int,
entity_num_max_elements: Optional[int],
embedding_size: int,
):
"""
Constructs an EntityEmbedding module.
:param x_self_size: Size of "self" entity.
:param entity_size: Size of other entities.
:param entity_num_max_elements: Maximum elements for a given entity, None for unrestricted.
Needs to be assigned in order for model to be exportable to ONNX and Barracuda.
:param embedding_size: Embedding size for the entity encoder.
:param concat_self: Whether to concatenate x_self to entities. Set True for ego-centric
self-attention.
"""
super().__init__()
self.self_size: int = 0
self.entity_size: int = entity_size
self.entity_num_max_elements: int = -1
if entity_num_max_elements is not None:
self.entity_num_max_elements = entity_num_max_elements
self.embedding_size = embedding_size
# Initialization scheme from http://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf
self.self_ent_encoder = LinearEncoder(
self.entity_size,
1,
self.embedding_size,
kernel_init=Initialization.Normal,
kernel_gain=(0.125 / self.embedding_size) ** 0.5,
)
def add_self_embedding(self, size: int) -> None:
self.self_size = size
self.self_ent_encoder = LinearEncoder(
self.self_size + self.entity_size,
1,
self.embedding_size,
kernel_init=Initialization.Normal,
kernel_gain=(0.125 / self.embedding_size) ** 0.5,
)
def forward(self, x_self: torch.Tensor, entities: torch.Tensor) -> torch.Tensor:
num_entities = self.entity_num_max_elements
if num_entities < 0:
if exporting_to_onnx.is_exporting():
raise UnityTrainerException(
"Trying to export an attention mechanism that doesn't have a set max \
number of elements."
)
num_entities = entities.shape[1]
if exporting_to_onnx.is_exporting():
# When exporting to ONNX, we want to transpose the entities. This is
# because ONNX only support input in NCHW (channel first) format.
# Barracuda also expect to get data in NCHW.
entities = torch.transpose(entities, 2, 1).reshape(
-1, num_entities, self.entity_size
)
if self.self_size > 0:
expanded_self = x_self.reshape(-1, 1, self.self_size)
expanded_self = torch.cat([expanded_self] * num_entities, dim=1)
# Concatenate all observations with self
entities = torch.cat([expanded_self, entities], dim=2)
# Encode entities
encoded_entities = self.self_ent_encoder(entities)
return encoded_entities
class ResidualSelfAttention(torch.nn.Module):
"""
Residual self attentioninspired from https://arxiv.org/pdf/1909.07528.pdf. Can be used
with an EntityEmbedding module, to apply multi head self attention to encode information
about a "Self" and a list of relevant "Entities".
"""
EPSILON = 1e-7
def __init__(
self,
embedding_size: int,
entity_num_max_elements: Optional[int] = None,
num_heads: int = 4,
):
"""
Constructs a ResidualSelfAttention module.
:param embedding_size: Embedding sizee for attention mechanism and
Q, K, V encoders.
:param entity_num_max_elements: A List of ints representing the maximum number
of elements in an entity sequence. Should be of length num_entities. Pass None to
not restrict the number of elements; however, this will make the module
unexportable to ONNX/Barracuda.
:param num_heads: Number of heads for Multi Head Self-Attention
"""
super().__init__()
self.max_num_ent: Optional[int] = None
if entity_num_max_elements is not None:
self.max_num_ent = entity_num_max_elements
self.attention = MultiHeadAttention(
num_heads=num_heads, embedding_size=embedding_size
)
# Initialization scheme from http://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf
self.fc_q = linear_layer(
embedding_size,
embedding_size,
kernel_init=Initialization.Normal,
kernel_gain=(0.125 / embedding_size) ** 0.5,
)
self.fc_k = linear_layer(
embedding_size,
embedding_size,
kernel_init=Initialization.Normal,
kernel_gain=(0.125 / embedding_size) ** 0.5,
)
self.fc_v = linear_layer(
embedding_size,
embedding_size,
kernel_init=Initialization.Normal,
kernel_gain=(0.125 / embedding_size) ** 0.5,
)
self.fc_out = linear_layer(
embedding_size,
embedding_size,
kernel_init=Initialization.Normal,
kernel_gain=(0.125 / embedding_size) ** 0.5,
)
self.embedding_norm = LayerNorm()
self.residual_norm = LayerNorm()
def forward(self, inp: torch.Tensor, key_masks: List[torch.Tensor]) -> torch.Tensor:
# Gather the maximum number of entities information
mask = torch.cat(key_masks, dim=1)
inp = self.embedding_norm(inp)
# Feed to self attention
query = self.fc_q(inp) # (b, n_q, emb)
key = self.fc_k(inp) # (b, n_k, emb)
value = self.fc_v(inp) # (b, n_k, emb)
# Only use max num if provided
if self.max_num_ent is not None:
num_ent = self.max_num_ent
else:
num_ent = inp.shape[1]
if exporting_to_onnx.is_exporting():
raise UnityTrainerException(
"Trying to export an attention mechanism that doesn't have a set max \
number of elements."
)
output, _ = self.attention(query, key, value, num_ent, num_ent, mask)
# Residual
output = self.fc_out(output) + inp
output = self.residual_norm(output)
# Average Pooling
numerator = torch.sum(output * (1 - mask).reshape(-1, num_ent, 1), dim=1)
denominator = torch.sum(1 - mask, dim=1, keepdim=True) + self.EPSILON
output = numerator / denominator
return output
|