File size: 8,238 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import abc
from typing import List
from mlagents.torch_utils import torch, nn
import numpy as np
import math
from mlagents.trainers.torch_entities.layers import linear_layer, Initialization

EPSILON = 1e-7  # Small value to avoid divide by zero


class DistInstance(nn.Module, abc.ABC):
    @abc.abstractmethod
    def sample(self) -> torch.Tensor:
        """
        Return a sample from this distribution.
        """
        pass

    @abc.abstractmethod
    def deterministic_sample(self) -> torch.Tensor:
        """
        Return the most probable sample from this distribution.
        """
        pass

    @abc.abstractmethod
    def log_prob(self, value: torch.Tensor) -> torch.Tensor:
        """
        Returns the log probabilities of a particular value.
        :param value: A value sampled from the distribution.
        :returns: Log probabilities of the given value.
        """
        pass

    @abc.abstractmethod
    def entropy(self) -> torch.Tensor:
        """
        Returns the entropy of this distribution.
        """
        pass

    @abc.abstractmethod
    def exported_model_output(self) -> torch.Tensor:
        """
        Returns the tensor to be exported to ONNX for the distribution
        """
        pass


class DiscreteDistInstance(DistInstance):
    @abc.abstractmethod
    def all_log_prob(self) -> torch.Tensor:
        """
        Returns the log probabilities of all actions represented by this distribution.
        """
        pass


class GaussianDistInstance(DistInstance):
    def __init__(self, mean, std):
        super().__init__()
        self.mean = mean
        self.std = std

    def sample(self):
        sample = self.mean + torch.randn_like(self.mean) * self.std
        return sample

    def deterministic_sample(self):
        return self.mean

    def log_prob(self, value):
        var = self.std**2
        log_scale = torch.log(self.std + EPSILON)
        return (
            -((value - self.mean) ** 2) / (2 * var + EPSILON)
            - log_scale
            - math.log(math.sqrt(2 * math.pi))
        )

    def pdf(self, value):
        log_prob = self.log_prob(value)
        return torch.exp(log_prob)

    def entropy(self):
        return torch.mean(
            0.5 * torch.log(2 * math.pi * math.e * self.std**2 + EPSILON),
            dim=1,
            keepdim=True,
        )  # Use equivalent behavior to TF

    def exported_model_output(self):
        return self.sample()


class TanhGaussianDistInstance(GaussianDistInstance):
    def __init__(self, mean, std):
        super().__init__(mean, std)
        self.transform = torch.distributions.transforms.TanhTransform(cache_size=1)

    def sample(self):
        unsquashed_sample = super().sample()
        squashed = self.transform(unsquashed_sample)
        return squashed

    def _inverse_tanh(self, value):
        capped_value = torch.clamp(value, -1 + EPSILON, 1 - EPSILON)
        return 0.5 * torch.log((1 + capped_value) / (1 - capped_value) + EPSILON)

    def log_prob(self, value):
        unsquashed = self.transform.inv(value)
        return super().log_prob(unsquashed) - self.transform.log_abs_det_jacobian(
            unsquashed, value
        )


class CategoricalDistInstance(DiscreteDistInstance):
    def __init__(self, logits):
        super().__init__()
        self.logits = logits
        self.probs = torch.softmax(self.logits, dim=-1)

    def sample(self):
        return torch.multinomial(self.probs, 1)

    def deterministic_sample(self):
        return torch.argmax(self.probs, dim=1, keepdim=True)

    def pdf(self, value):
        # This function is equivalent to torch.diag(self.probs.T[value.flatten().long()]),
        # but torch.diag is not supported by ONNX export.
        idx = torch.arange(start=0, end=len(value)).unsqueeze(-1)
        return torch.gather(
            self.probs.permute(1, 0)[value.flatten().long()], -1, idx
        ).squeeze(-1)

    def log_prob(self, value):
        return torch.log(self.pdf(value) + EPSILON)

    def all_log_prob(self):
        return torch.log(self.probs + EPSILON)

    def entropy(self):
        return -torch.sum(
            self.probs * torch.log(self.probs + EPSILON), dim=-1
        ).unsqueeze(-1)

    def exported_model_output(self):
        return self.sample()


class GaussianDistribution(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_outputs: int,
        conditional_sigma: bool = False,
        tanh_squash: bool = False,
    ):
        super().__init__()
        self.conditional_sigma = conditional_sigma
        self.mu = linear_layer(
            hidden_size,
            num_outputs,
            kernel_init=Initialization.KaimingHeNormal,
            kernel_gain=0.2,
            bias_init=Initialization.Zero,
        )
        self.tanh_squash = tanh_squash
        if conditional_sigma:
            self.log_sigma = linear_layer(
                hidden_size,
                num_outputs,
                kernel_init=Initialization.KaimingHeNormal,
                kernel_gain=0.2,
                bias_init=Initialization.Zero,
            )
        else:
            self.log_sigma = nn.Parameter(
                torch.zeros(1, num_outputs, requires_grad=True)
            )

    def forward(self, inputs: torch.Tensor) -> List[DistInstance]:
        mu = self.mu(inputs)
        if self.conditional_sigma:
            log_sigma = torch.clamp(self.log_sigma(inputs), min=-20, max=2)
        else:
            # Expand so that entropy matches batch size. Note that we're using
            # mu*0 here to get the batch size implicitly since Barracuda 1.2.1
            # throws error on runtime broadcasting due to unknown reason. We
            # use this to replace torch.expand() becuase it is not supported in
            # the verified version of Barracuda (1.0.X).
            log_sigma = mu * 0 + self.log_sigma
        if self.tanh_squash:
            return TanhGaussianDistInstance(mu, torch.exp(log_sigma))
        else:
            return GaussianDistInstance(mu, torch.exp(log_sigma))


class MultiCategoricalDistribution(nn.Module):
    def __init__(self, hidden_size: int, act_sizes: List[int]):
        super().__init__()
        self.act_sizes = act_sizes
        self.branches = self._create_policy_branches(hidden_size)

    def _create_policy_branches(self, hidden_size: int) -> nn.ModuleList:
        branches = []
        for size in self.act_sizes:
            branch_output_layer = linear_layer(
                hidden_size,
                size,
                kernel_init=Initialization.KaimingHeNormal,
                kernel_gain=0.1,
                bias_init=Initialization.Zero,
            )
            branches.append(branch_output_layer)
        return nn.ModuleList(branches)

    def _mask_branch(
        self, logits: torch.Tensor, allow_mask: torch.Tensor
    ) -> torch.Tensor:
        # Zero out masked logits, then subtract a large value. Technique mentionend here:
        # https://arxiv.org/abs/2006.14171. Our implementation is ONNX and Barracuda-friendly.
        block_mask = -1.0 * allow_mask + 1.0
        # We do -1 * tensor + constant instead of constant - tensor because it seems
        # Barracuda might swap the inputs of a "Sub" operation
        logits = logits * allow_mask - 1e8 * block_mask

        return logits

    def _split_masks(self, masks: torch.Tensor) -> List[torch.Tensor]:
        split_masks = []
        for idx, _ in enumerate(self.act_sizes):
            start = int(np.sum(self.act_sizes[:idx]))
            end = int(np.sum(self.act_sizes[: idx + 1]))
            split_masks.append(masks[:, start:end])
        return split_masks

    def forward(self, inputs: torch.Tensor, masks: torch.Tensor) -> List[DistInstance]:
        # Todo - Support multiple branches in mask code
        branch_distributions = []
        masks = self._split_masks(masks)
        for idx, branch in enumerate(self.branches):
            logits = branch(inputs)
            norm_logits = self._mask_branch(logits, masks[idx])
            distribution = CategoricalDistInstance(norm_logits)
            branch_distributions.append(distribution)
        return branch_distributions