File size: 29,280 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
from typing import Callable, List, Dict, Tuple, Optional, Union, Any
import abc
from mlagents.torch_utils import torch, nn
from mlagents_envs.base_env import ActionSpec, ObservationSpec, ObservationType
from mlagents.trainers.torch_entities.action_model import ActionModel
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.settings import NetworkSettings, EncoderType, ConditioningType
from mlagents.trainers.torch_entities.utils import ModelUtils
from mlagents.trainers.torch_entities.decoders import ValueHeads
from mlagents.trainers.torch_entities.layers import LSTM, LinearEncoder
from mlagents.trainers.torch_entities.encoders import VectorInput
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.trajectory import ObsUtil
from mlagents.trainers.torch_entities.conditioning import ConditionalEncoder
from mlagents.trainers.torch_entities.attention import (
EntityEmbedding,
ResidualSelfAttention,
get_zero_entities_mask,
)
from mlagents.trainers.exception import UnityTrainerException
ActivationFunction = Callable[[torch.Tensor], torch.Tensor]
EncoderFunction = Callable[
[torch.Tensor, int, ActivationFunction, int, str, bool], torch.Tensor
]
EPSILON = 1e-7
class ObservationEncoder(nn.Module):
ATTENTION_EMBEDDING_SIZE = 128 # The embedding size of attention is fixed
def __init__(
self,
observation_specs: List[ObservationSpec],
h_size: int,
vis_encode_type: EncoderType,
normalize: bool = False,
):
"""
Returns an ObservationEncoder that can process and encode a set of observations.
Will use an RSA if needed for variable length observations.
"""
super().__init__()
self.processors, self.embedding_sizes = ModelUtils.create_input_processors(
observation_specs,
h_size,
vis_encode_type,
self.ATTENTION_EMBEDDING_SIZE,
normalize=normalize,
)
self.rsa, self.x_self_encoder = ModelUtils.create_residual_self_attention(
self.processors, self.embedding_sizes, self.ATTENTION_EMBEDDING_SIZE
)
if self.rsa is not None:
total_enc_size = sum(self.embedding_sizes) + self.ATTENTION_EMBEDDING_SIZE
else:
total_enc_size = sum(self.embedding_sizes)
self.normalize = normalize
self._total_enc_size = total_enc_size
self._total_goal_enc_size = 0
self._goal_processor_indices: List[int] = []
for i in range(len(observation_specs)):
if observation_specs[i].observation_type == ObservationType.GOAL_SIGNAL:
self._total_goal_enc_size += self.embedding_sizes[i]
self._goal_processor_indices.append(i)
@property
def total_enc_size(self) -> int:
"""
Returns the total encoding size for this ObservationEncoder.
"""
return self._total_enc_size
@property
def total_goal_enc_size(self) -> int:
"""
Returns the total goal encoding size for this ObservationEncoder.
"""
return self._total_goal_enc_size
def update_normalization(self, buffer: AgentBuffer) -> None:
obs = ObsUtil.from_buffer(buffer, len(self.processors))
for vec_input, enc in zip(obs, self.processors):
if isinstance(enc, VectorInput):
enc.update_normalization(torch.as_tensor(vec_input.to_ndarray()))
def copy_normalization(self, other_encoder: "ObservationEncoder") -> None:
if self.normalize:
for n1, n2 in zip(self.processors, other_encoder.processors):
if isinstance(n1, VectorInput) and isinstance(n2, VectorInput):
n1.copy_normalization(n2)
def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:
"""
Encode observations using a list of processors and an RSA.
:param inputs: List of Tensors corresponding to a set of obs.
"""
encodes = []
var_len_processor_inputs: List[Tuple[nn.Module, torch.Tensor]] = []
for idx, processor in enumerate(self.processors):
if not isinstance(processor, EntityEmbedding):
# The input can be encoded without having to process other inputs
obs_input = inputs[idx]
processed_obs = processor(obs_input)
encodes.append(processed_obs)
else:
var_len_processor_inputs.append((processor, inputs[idx]))
if len(encodes) != 0:
encoded_self = torch.cat(encodes, dim=1)
input_exist = True
else:
input_exist = False
if len(var_len_processor_inputs) > 0 and self.rsa is not None:
# Some inputs need to be processed with a variable length encoder
masks = get_zero_entities_mask([p_i[1] for p_i in var_len_processor_inputs])
embeddings: List[torch.Tensor] = []
processed_self = (
self.x_self_encoder(encoded_self)
if input_exist and self.x_self_encoder is not None
else None
)
for processor, var_len_input in var_len_processor_inputs:
embeddings.append(processor(processed_self, var_len_input))
qkv = torch.cat(embeddings, dim=1)
attention_embedding = self.rsa(qkv, masks)
if not input_exist:
encoded_self = torch.cat([attention_embedding], dim=1)
input_exist = True
else:
encoded_self = torch.cat([encoded_self, attention_embedding], dim=1)
if not input_exist:
raise UnityTrainerException(
"The trainer was unable to process any of the provided inputs. "
"Make sure the trained agents has at least one sensor attached to them."
)
return encoded_self
def get_goal_encoding(self, inputs: List[torch.Tensor]) -> torch.Tensor:
"""
Encode observations corresponding to goals using a list of processors.
:param inputs: List of Tensors corresponding to a set of obs.
"""
encodes = []
for idx in self._goal_processor_indices:
processor = self.processors[idx]
if not isinstance(processor, EntityEmbedding):
# The input can be encoded without having to process other inputs
obs_input = inputs[idx]
processed_obs = processor(obs_input)
encodes.append(processed_obs)
else:
raise UnityTrainerException(
"The one of the goals uses variable length observations. This use "
"case is not supported."
)
if len(encodes) != 0:
encoded = torch.cat(encodes, dim=1)
else:
raise UnityTrainerException(
"Trainer was unable to process any of the goals provided as input."
)
return encoded
class NetworkBody(nn.Module):
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
encoded_act_size: int = 0,
):
super().__init__()
self.normalize = network_settings.normalize
self.use_lstm = network_settings.memory is not None
self.h_size = network_settings.hidden_units
self.m_size = (
network_settings.memory.memory_size
if network_settings.memory is not None
else 0
)
self.observation_encoder = ObservationEncoder(
observation_specs,
self.h_size,
network_settings.vis_encode_type,
self.normalize,
)
self.processors = self.observation_encoder.processors
total_enc_size = self.observation_encoder.total_enc_size
total_enc_size += encoded_act_size
if (
self.observation_encoder.total_goal_enc_size > 0
and network_settings.goal_conditioning_type == ConditioningType.HYPER
):
self._body_endoder = ConditionalEncoder(
total_enc_size,
self.observation_encoder.total_goal_enc_size,
self.h_size,
network_settings.num_layers,
1,
)
else:
self._body_endoder = LinearEncoder(
total_enc_size, network_settings.num_layers, self.h_size
)
if self.use_lstm:
self.lstm = LSTM(self.h_size, self.m_size)
else:
self.lstm = None # type: ignore
def update_normalization(self, buffer: AgentBuffer) -> None:
self.observation_encoder.update_normalization(buffer)
def copy_normalization(self, other_network: "NetworkBody") -> None:
self.observation_encoder.copy_normalization(other_network.observation_encoder)
@property
def memory_size(self) -> int:
return self.lstm.memory_size if self.use_lstm else 0
def forward(
self,
inputs: List[torch.Tensor],
actions: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
encoded_self = self.observation_encoder(inputs)
if actions is not None:
encoded_self = torch.cat([encoded_self, actions], dim=1)
if isinstance(self._body_endoder, ConditionalEncoder):
goal = self.observation_encoder.get_goal_encoding(inputs)
encoding = self._body_endoder(encoded_self, goal)
else:
encoding = self._body_endoder(encoded_self)
if self.use_lstm:
# Resize to (batch, sequence length, encoding size)
encoding = encoding.reshape([-1, sequence_length, self.h_size])
encoding, memories = self.lstm(encoding, memories)
encoding = encoding.reshape([-1, self.m_size // 2])
return encoding, memories
class MultiAgentNetworkBody(torch.nn.Module):
"""
A network body that uses a self attention layer to handle state
and action input from a potentially variable number of agents that
share the same observation and action space.
"""
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
):
super().__init__()
self.normalize = network_settings.normalize
self.use_lstm = network_settings.memory is not None
self.h_size = network_settings.hidden_units
self.m_size = (
network_settings.memory.memory_size
if network_settings.memory is not None
else 0
)
self.action_spec = action_spec
self.observation_encoder = ObservationEncoder(
observation_specs,
self.h_size,
network_settings.vis_encode_type,
self.normalize,
)
self.processors = self.observation_encoder.processors
# Modules for multi-agent self-attention
obs_only_ent_size = self.observation_encoder.total_enc_size
q_ent_size = (
obs_only_ent_size
+ sum(self.action_spec.discrete_branches)
+ self.action_spec.continuous_size
)
attention_embeding_size = self.h_size
self.obs_encoder = EntityEmbedding(
obs_only_ent_size, None, attention_embeding_size
)
self.obs_action_encoder = EntityEmbedding(
q_ent_size, None, attention_embeding_size
)
self.self_attn = ResidualSelfAttention(attention_embeding_size)
self.linear_encoder = LinearEncoder(
attention_embeding_size,
network_settings.num_layers,
self.h_size,
kernel_gain=(0.125 / self.h_size) ** 0.5,
)
if self.use_lstm:
self.lstm = LSTM(self.h_size, self.m_size)
else:
self.lstm = None # type: ignore
self._current_max_agents = torch.nn.Parameter(
torch.as_tensor(1), requires_grad=False
)
@property
def memory_size(self) -> int:
return self.lstm.memory_size if self.use_lstm else 0
def update_normalization(self, buffer: AgentBuffer) -> None:
self.observation_encoder.update_normalization(buffer)
def copy_normalization(self, other_network: "MultiAgentNetworkBody") -> None:
self.observation_encoder.copy_normalization(other_network.observation_encoder)
def _get_masks_from_nans(self, obs_tensors: List[torch.Tensor]) -> torch.Tensor:
"""
Get attention masks by grabbing an arbitrary obs across all the agents
Since these are raw obs, the padded values are still NaN
"""
only_first_obs = [_all_obs[0] for _all_obs in obs_tensors]
# Just get the first element in each obs regardless of its dimension. This will speed up
# searching for NaNs.
only_first_obs_flat = torch.stack(
[_obs.flatten(start_dim=1)[:, 0] for _obs in only_first_obs], dim=1
)
# Get the mask from NaNs
attn_mask = only_first_obs_flat.isnan().float()
return attn_mask
def _copy_and_remove_nans_from_obs(
self, all_obs: List[List[torch.Tensor]], attention_mask: torch.Tensor
) -> List[List[torch.Tensor]]:
"""
Helper function to remove NaNs from observations using an attention mask.
"""
obs_with_no_nans = []
for i_agent, single_agent_obs in enumerate(all_obs):
no_nan_obs = []
for obs in single_agent_obs:
new_obs = obs.clone()
new_obs[attention_mask.bool()[:, i_agent], ::] = 0.0 # Remove NaNs fast
no_nan_obs.append(new_obs)
obs_with_no_nans.append(no_nan_obs)
return obs_with_no_nans
def forward(
self,
obs_only: List[List[torch.Tensor]],
obs: List[List[torch.Tensor]],
actions: List[AgentAction],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns sampled actions.
If memory is enabled, return the memories as well.
:param obs_only: Observations to be processed that do not have corresponding actions.
These are encoded with the obs_encoder.
:param obs: Observations to be processed that do have corresponding actions.
After concatenation with actions, these are processed with obs_action_encoder.
:param actions: After concatenation with obs, these are processed with obs_action_encoder.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
"""
self_attn_masks = []
self_attn_inputs = []
concat_f_inp = []
if obs:
obs_attn_mask = self._get_masks_from_nans(obs)
obs = self._copy_and_remove_nans_from_obs(obs, obs_attn_mask)
for inputs, action in zip(obs, actions):
encoded = self.observation_encoder(inputs)
cat_encodes = [
encoded,
action.to_flat(self.action_spec.discrete_branches),
]
concat_f_inp.append(torch.cat(cat_encodes, dim=1))
f_inp = torch.stack(concat_f_inp, dim=1)
self_attn_masks.append(obs_attn_mask)
self_attn_inputs.append(self.obs_action_encoder(None, f_inp))
concat_encoded_obs = []
if obs_only:
obs_only_attn_mask = self._get_masks_from_nans(obs_only)
obs_only = self._copy_and_remove_nans_from_obs(obs_only, obs_only_attn_mask)
for inputs in obs_only:
encoded = self.observation_encoder(inputs)
concat_encoded_obs.append(encoded)
g_inp = torch.stack(concat_encoded_obs, dim=1)
self_attn_masks.append(obs_only_attn_mask)
self_attn_inputs.append(self.obs_encoder(None, g_inp))
encoded_entity = torch.cat(self_attn_inputs, dim=1)
encoded_state = self.self_attn(encoded_entity, self_attn_masks)
flipped_masks = 1 - torch.cat(self_attn_masks, dim=1)
num_agents = torch.sum(flipped_masks, dim=1, keepdim=True)
if torch.max(num_agents).item() > self._current_max_agents:
self._current_max_agents = torch.nn.Parameter(
torch.as_tensor(torch.max(num_agents).item()), requires_grad=False
)
# num_agents will be -1 for a single agent and +1 when the current maximum is reached
num_agents = num_agents * 2.0 / self._current_max_agents - 1
encoding = self.linear_encoder(encoded_state)
if self.use_lstm:
# Resize to (batch, sequence length, encoding size)
encoding = encoding.reshape([-1, sequence_length, self.h_size])
encoding, memories = self.lstm(encoding, memories)
encoding = encoding.reshape([-1, self.m_size // 2])
encoding = torch.cat([encoding, num_agents], dim=1)
return encoding, memories
class Critic(abc.ABC):
@abc.abstractmethod
def update_normalization(self, buffer: AgentBuffer) -> None:
"""
Updates normalization of Actor based on the provided List of vector obs.
:param vector_obs: A List of vector obs as tensors.
"""
pass
def critic_pass(
self,
inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
"""
Get value outputs for the given obs.
:param inputs: List of inputs as tensors.
:param memories: Tensor of memories, if using memory. Otherwise, None.
:returns: Dict of reward stream to output tensor for values.
"""
pass
class ValueNetwork(nn.Module, Critic):
def __init__(
self,
stream_names: List[str],
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
encoded_act_size: int = 0,
outputs_per_stream: int = 1,
):
# This is not a typo, we want to call __init__ of nn.Module
nn.Module.__init__(self)
self.network_body = NetworkBody(
observation_specs, network_settings, encoded_act_size=encoded_act_size
)
if network_settings.memory is not None:
encoding_size = network_settings.memory.memory_size // 2
else:
encoding_size = network_settings.hidden_units
self.value_heads = ValueHeads(stream_names, encoding_size, outputs_per_stream)
def update_normalization(self, buffer: AgentBuffer) -> None:
self.network_body.update_normalization(buffer)
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def critic_pass(
self,
inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
value_outputs, critic_mem_out = self.forward(
inputs, memories=memories, sequence_length=sequence_length
)
return value_outputs, critic_mem_out
def forward(
self,
inputs: List[torch.Tensor],
actions: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
encoding, memories = self.network_body(
inputs, actions, memories, sequence_length
)
output = self.value_heads(encoding)
return output, memories
class Actor(abc.ABC):
@abc.abstractmethod
def update_normalization(self, buffer: AgentBuffer) -> None:
"""
Updates normalization of Actor based on the provided List of vector obs.
:param vector_obs: A List of vector obs as tensors.
"""
pass
def get_action_and_stats(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[AgentAction, Dict[str, Any], torch.Tensor]:
"""
Returns sampled actions.
If memory is enabled, return the memories as well.
:param inputs: A List of inputs as tensors.
:param masks: If using discrete actions, a Tensor of action masks.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of AgentAction, ActionLogProbs, entropies, and memories.
Memories will be None if not using memory.
"""
pass
def get_stats(
self,
inputs: List[torch.Tensor],
actions: AgentAction,
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Dict[str, Any]:
"""
Returns log_probs for actions and entropies.
If memory is enabled, return the memories as well.
:param inputs: A List of inputs as tensors.
:param actions: AgentAction of actions.
:param masks: If using discrete actions, a Tensor of action masks.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of AgentAction, ActionLogProbs, entropies, and memories.
Memories will be None if not using memory.
"""
pass
@abc.abstractmethod
def forward(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
) -> Tuple[Union[int, torch.Tensor], ...]:
"""
Forward pass of the Actor for inference. This is required for export to ONNX, and
the inputs and outputs of this method should not be changed without a respective change
in the ONNX export code.
"""
pass
class SimpleActor(nn.Module, Actor):
MODEL_EXPORT_VERSION = 3 # Corresponds to ModelApiVersion.MLAgents2_0
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
conditional_sigma: bool = False,
tanh_squash: bool = False,
):
super().__init__()
self.action_spec = action_spec
self.version_number = torch.nn.Parameter(
torch.Tensor([self.MODEL_EXPORT_VERSION]), requires_grad=False
)
self.is_continuous_int_deprecated = torch.nn.Parameter(
torch.Tensor([int(self.action_spec.is_continuous())]), requires_grad=False
)
self.continuous_act_size_vector = torch.nn.Parameter(
torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False
)
self.discrete_act_size_vector = torch.nn.Parameter(
torch.Tensor([self.action_spec.discrete_branches]), requires_grad=False
)
self.act_size_vector_deprecated = torch.nn.Parameter(
torch.Tensor(
[
self.action_spec.continuous_size
+ sum(self.action_spec.discrete_branches)
]
),
requires_grad=False,
)
self.network_body = NetworkBody(observation_specs, network_settings)
if network_settings.memory is not None:
self.encoding_size = network_settings.memory.memory_size // 2
else:
self.encoding_size = network_settings.hidden_units
self.memory_size_vector = torch.nn.Parameter(
torch.Tensor([int(self.network_body.memory_size)]), requires_grad=False
)
self.action_model = ActionModel(
self.encoding_size,
action_spec,
conditional_sigma=conditional_sigma,
tanh_squash=tanh_squash,
deterministic=network_settings.deterministic,
)
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def update_normalization(self, buffer: AgentBuffer) -> None:
self.network_body.update_normalization(buffer)
def get_action_and_stats(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[AgentAction, Dict[str, Any], torch.Tensor]:
encoding, memories = self.network_body(
inputs, memories=memories, sequence_length=sequence_length
)
action, log_probs, entropies = self.action_model(encoding, masks)
run_out = {}
# This is the clipped action which is not saved to the buffer
# but is exclusively sent to the environment.
run_out["env_action"] = action.to_action_tuple(
clip=self.action_model.clip_action
)
run_out["log_probs"] = log_probs
run_out["entropy"] = entropies
return action, run_out, memories
def get_stats(
self,
inputs: List[torch.Tensor],
actions: AgentAction,
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Dict[str, Any]:
encoding, actor_mem_outs = self.network_body(
inputs, memories=memories, sequence_length=sequence_length
)
log_probs, entropies = self.action_model.evaluate(encoding, masks, actions)
run_out = {}
run_out["log_probs"] = log_probs
run_out["entropy"] = entropies
return run_out
def forward(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
) -> Tuple[Union[int, torch.Tensor], ...]:
"""
Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs.
At this moment, torch.onnx.export() doesn't accept None as tensor to be exported,
so the size of return tuple varies with action spec.
"""
encoding, memories_out = self.network_body(
inputs, memories=memories, sequence_length=1
)
(
cont_action_out,
disc_action_out,
action_out_deprecated,
deterministic_cont_action_out,
deterministic_disc_action_out,
) = self.action_model.get_action_out(encoding, masks)
export_out = [self.version_number, self.memory_size_vector]
if self.action_spec.continuous_size > 0:
export_out += [
cont_action_out,
self.continuous_act_size_vector,
deterministic_cont_action_out,
]
if self.action_spec.discrete_size > 0:
export_out += [
disc_action_out,
self.discrete_act_size_vector,
deterministic_disc_action_out,
]
if self.network_body.memory_size > 0:
export_out += [memories_out]
return tuple(export_out)
class SharedActorCritic(SimpleActor, Critic):
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
stream_names: List[str],
conditional_sigma: bool = False,
tanh_squash: bool = False,
):
self.use_lstm = network_settings.memory is not None
super().__init__(
observation_specs,
network_settings,
action_spec,
conditional_sigma,
tanh_squash,
)
self.stream_names = stream_names
self.value_heads = ValueHeads(stream_names, self.encoding_size)
def critic_pass(
self,
inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
encoding, memories_out = self.network_body(
inputs, memories=memories, sequence_length=sequence_length
)
return self.value_heads(encoding), memories_out
class GlobalSteps(nn.Module):
def __init__(self):
super().__init__()
self.__global_step = nn.Parameter(
torch.Tensor([0]).to(torch.int64), requires_grad=False
)
@property
def current_step(self):
return int(self.__global_step.item())
@current_step.setter
def current_step(self, value):
self.__global_step[:] = value
def increment(self, value):
self.__global_step += value
class LearningRate(nn.Module):
def __init__(self, lr):
# Todo: add learning rate decay
super().__init__()
self.learning_rate = torch.Tensor([lr])
|