|
import os |
|
from typing import List, Tuple |
|
import numpy as np |
|
from mlagents.trainers.buffer import AgentBuffer, BufferKey |
|
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import ( |
|
AgentInfoActionPairProto, |
|
) |
|
from mlagents.trainers.trajectory import ObsUtil |
|
from mlagents_envs.rpc_utils import behavior_spec_from_proto, steps_from_proto |
|
from mlagents_envs.base_env import BehaviorSpec |
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto |
|
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import ( |
|
DemonstrationMetaProto, |
|
) |
|
from mlagents_envs.timers import timed, hierarchical_timer |
|
from google.protobuf.internal.decoder import _DecodeVarint32 |
|
from google.protobuf.internal.encoder import _EncodeVarint |
|
|
|
|
|
INITIAL_POS = 33 |
|
SUPPORTED_DEMONSTRATION_VERSIONS = frozenset([0, 1]) |
|
|
|
|
|
@timed |
|
def make_demo_buffer( |
|
pair_infos: List[AgentInfoActionPairProto], |
|
behavior_spec: BehaviorSpec, |
|
sequence_length: int, |
|
) -> AgentBuffer: |
|
|
|
demo_raw_buffer = AgentBuffer() |
|
demo_processed_buffer = AgentBuffer() |
|
for idx, current_pair_info in enumerate(pair_infos): |
|
if idx > len(pair_infos) - 2: |
|
break |
|
next_pair_info = pair_infos[idx + 1] |
|
current_decision_step, current_terminal_step = steps_from_proto( |
|
[current_pair_info.agent_info], behavior_spec |
|
) |
|
next_decision_step, next_terminal_step = steps_from_proto( |
|
[next_pair_info.agent_info], behavior_spec |
|
) |
|
previous_action = ( |
|
np.array( |
|
pair_infos[idx].action_info.vector_actions_deprecated, dtype=np.float32 |
|
) |
|
* 0 |
|
) |
|
if idx > 0: |
|
previous_action = np.array( |
|
pair_infos[idx - 1].action_info.vector_actions_deprecated, |
|
dtype=np.float32, |
|
) |
|
|
|
next_done = len(next_terminal_step) == 1 |
|
next_reward = 0 |
|
if len(next_terminal_step) == 1: |
|
next_reward = next_terminal_step.reward[0] |
|
else: |
|
next_reward = next_decision_step.reward[0] |
|
current_obs = None |
|
if len(current_terminal_step) == 1: |
|
current_obs = list(current_terminal_step.values())[0].obs |
|
else: |
|
current_obs = list(current_decision_step.values())[0].obs |
|
|
|
demo_raw_buffer[BufferKey.DONE].append(next_done) |
|
demo_raw_buffer[BufferKey.ENVIRONMENT_REWARDS].append(next_reward) |
|
for i, obs in enumerate(current_obs): |
|
demo_raw_buffer[ObsUtil.get_name_at(i)].append(obs) |
|
if ( |
|
len(current_pair_info.action_info.continuous_actions) == 0 |
|
and len(current_pair_info.action_info.discrete_actions) == 0 |
|
): |
|
if behavior_spec.action_spec.continuous_size > 0: |
|
demo_raw_buffer[BufferKey.CONTINUOUS_ACTION].append( |
|
current_pair_info.action_info.vector_actions_deprecated |
|
) |
|
else: |
|
demo_raw_buffer[BufferKey.DISCRETE_ACTION].append( |
|
current_pair_info.action_info.vector_actions_deprecated |
|
) |
|
else: |
|
if behavior_spec.action_spec.continuous_size > 0: |
|
demo_raw_buffer[BufferKey.CONTINUOUS_ACTION].append( |
|
current_pair_info.action_info.continuous_actions |
|
) |
|
if behavior_spec.action_spec.discrete_size > 0: |
|
demo_raw_buffer[BufferKey.DISCRETE_ACTION].append( |
|
current_pair_info.action_info.discrete_actions |
|
) |
|
demo_raw_buffer[BufferKey.PREV_ACTION].append(previous_action) |
|
if next_done: |
|
demo_raw_buffer.resequence_and_append( |
|
demo_processed_buffer, batch_size=None, training_length=sequence_length |
|
) |
|
demo_raw_buffer.reset_agent() |
|
demo_raw_buffer.resequence_and_append( |
|
demo_processed_buffer, batch_size=None, training_length=sequence_length |
|
) |
|
return demo_processed_buffer |
|
|
|
|
|
@timed |
|
def demo_to_buffer( |
|
file_path: str, sequence_length: int, expected_behavior_spec: BehaviorSpec = None |
|
) -> Tuple[BehaviorSpec, AgentBuffer]: |
|
""" |
|
Loads demonstration file and uses it to fill training buffer. |
|
:param file_path: Location of demonstration file (.demo). |
|
:param sequence_length: Length of trajectories to fill buffer. |
|
:return: |
|
""" |
|
behavior_spec, info_action_pair, _ = load_demonstration(file_path) |
|
demo_buffer = make_demo_buffer(info_action_pair, behavior_spec, sequence_length) |
|
if expected_behavior_spec: |
|
|
|
if behavior_spec.action_spec != expected_behavior_spec.action_spec: |
|
raise RuntimeError( |
|
"The actions {} in demonstration do not match the policy's {}.".format( |
|
behavior_spec.action_spec, expected_behavior_spec.action_spec |
|
) |
|
) |
|
|
|
if len(behavior_spec.observation_specs) != len( |
|
expected_behavior_spec.observation_specs |
|
): |
|
raise RuntimeError( |
|
"The demonstrations do not have the same number of observations as the policy." |
|
) |
|
else: |
|
for i, (demo_obs, policy_obs) in enumerate( |
|
zip( |
|
behavior_spec.observation_specs, |
|
expected_behavior_spec.observation_specs, |
|
) |
|
): |
|
if demo_obs.shape != policy_obs.shape: |
|
raise RuntimeError( |
|
f"The shape {demo_obs} for observation {i} in demonstration \ |
|
do not match the policy's {policy_obs}." |
|
) |
|
return behavior_spec, demo_buffer |
|
|
|
|
|
def get_demo_files(path: str) -> List[str]: |
|
""" |
|
Retrieves the demonstration file(s) from a path. |
|
:param path: Path of demonstration file or directory. |
|
:return: List of demonstration files |
|
|
|
Raises errors if |path| is invalid. |
|
""" |
|
if os.path.isfile(path): |
|
if not path.endswith(".demo"): |
|
raise ValueError("The path provided is not a '.demo' file.") |
|
return [path] |
|
elif os.path.isdir(path): |
|
paths = [ |
|
os.path.join(path, name) |
|
for name in os.listdir(path) |
|
if name.endswith(".demo") |
|
] |
|
if not paths: |
|
raise ValueError("There are no '.demo' files in the provided directory.") |
|
return paths |
|
else: |
|
raise FileNotFoundError( |
|
f"The demonstration file or directory {path} does not exist." |
|
) |
|
|
|
|
|
@timed |
|
def load_demonstration( |
|
file_path: str, |
|
) -> Tuple[BehaviorSpec, List[AgentInfoActionPairProto], int]: |
|
""" |
|
Loads and parses a demonstration file. |
|
:param file_path: Location of demonstration file (.demo). |
|
:return: BrainParameter and list of AgentInfoActionPairProto containing demonstration data. |
|
""" |
|
|
|
|
|
file_paths = get_demo_files(file_path) |
|
behavior_spec = None |
|
brain_param_proto = None |
|
info_action_pairs = [] |
|
total_expected = 0 |
|
for _file_path in file_paths: |
|
with open(_file_path, "rb") as fp: |
|
with hierarchical_timer("read_file"): |
|
data = fp.read() |
|
next_pos, pos, obs_decoded = 0, 0, 0 |
|
while pos < len(data): |
|
next_pos, pos = _DecodeVarint32(data, pos) |
|
if obs_decoded == 0: |
|
meta_data_proto = DemonstrationMetaProto() |
|
meta_data_proto.ParseFromString(data[pos : pos + next_pos]) |
|
if ( |
|
meta_data_proto.api_version |
|
not in SUPPORTED_DEMONSTRATION_VERSIONS |
|
): |
|
raise RuntimeError( |
|
f"Can't load Demonstration data from an unsupported version ({meta_data_proto.api_version})" |
|
) |
|
total_expected += meta_data_proto.number_steps |
|
pos = INITIAL_POS |
|
if obs_decoded == 1: |
|
brain_param_proto = BrainParametersProto() |
|
brain_param_proto.ParseFromString(data[pos : pos + next_pos]) |
|
pos += next_pos |
|
if obs_decoded > 1: |
|
agent_info_action = AgentInfoActionPairProto() |
|
agent_info_action.ParseFromString(data[pos : pos + next_pos]) |
|
if behavior_spec is None: |
|
behavior_spec = behavior_spec_from_proto( |
|
brain_param_proto, agent_info_action.agent_info |
|
) |
|
info_action_pairs.append(agent_info_action) |
|
if len(info_action_pairs) == total_expected: |
|
break |
|
pos += next_pos |
|
obs_decoded += 1 |
|
if not behavior_spec: |
|
raise RuntimeError( |
|
f"No BrainParameters found in demonstration file at {file_path}." |
|
) |
|
return behavior_spec, info_action_pairs, total_expected |
|
|
|
|
|
def write_delimited(f, message): |
|
msg_string = message.SerializeToString() |
|
msg_size = len(msg_string) |
|
_EncodeVarint(f.write, msg_size) |
|
f.write(msg_string) |
|
|
|
|
|
def write_demo(demo_path, meta_data_proto, brain_param_proto, agent_info_protos): |
|
with open(demo_path, "wb") as f: |
|
|
|
write_delimited(f, meta_data_proto) |
|
f.seek(INITIAL_POS) |
|
write_delimited(f, brain_param_proto) |
|
|
|
for agent in agent_info_protos: |
|
write_delimited(f, agent) |
|
|