|
from typing import Dict, List, Tuple, Optional |
|
from mlagents.trainers.settings import ( |
|
EnvironmentParameterSettings, |
|
ParameterRandomizationSettings, |
|
) |
|
from collections import defaultdict |
|
from mlagents.trainers.training_status import GlobalTrainingStatus, StatusType |
|
|
|
from mlagents_envs.logging_util import get_logger |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class EnvironmentParameterManager: |
|
def __init__( |
|
self, |
|
settings: Optional[Dict[str, EnvironmentParameterSettings]] = None, |
|
run_seed: int = -1, |
|
restore: bool = False, |
|
): |
|
""" |
|
EnvironmentParameterManager manages all the environment parameters of a training |
|
session. It determines when parameters should change and gives access to the |
|
current sampler of each parameter. |
|
:param settings: A dictionary from environment parameter to |
|
EnvironmentParameterSettings. |
|
:param run_seed: When the seed is not provided for an environment parameter, |
|
this seed will be used instead. |
|
:param restore: If true, the EnvironmentParameterManager will use the |
|
GlobalTrainingStatus to try and reload the lesson status of each environment |
|
parameter. |
|
""" |
|
if settings is None: |
|
settings = {} |
|
self._dict_settings = settings |
|
for parameter_name in self._dict_settings.keys(): |
|
initial_lesson = GlobalTrainingStatus.get_parameter_state( |
|
parameter_name, StatusType.LESSON_NUM |
|
) |
|
if initial_lesson is None or not restore: |
|
GlobalTrainingStatus.set_parameter_state( |
|
parameter_name, StatusType.LESSON_NUM, 0 |
|
) |
|
self._smoothed_values: Dict[str, float] = defaultdict(float) |
|
for key in self._dict_settings.keys(): |
|
self._smoothed_values[key] = 0.0 |
|
|
|
self._set_sampler_seeds(run_seed) |
|
|
|
def _set_sampler_seeds(self, seed): |
|
""" |
|
Sets the seeds for the samplers (if no seed was already present). Note that |
|
using the provided seed. |
|
""" |
|
offset = 0 |
|
for settings in self._dict_settings.values(): |
|
for lesson in settings.curriculum: |
|
if lesson.value.seed == -1: |
|
lesson.value.seed = seed + offset |
|
offset += 1 |
|
|
|
def get_minimum_reward_buffer_size(self, behavior_name: str) -> int: |
|
""" |
|
Calculates the minimum size of the reward buffer a behavior must use. This |
|
method uses the 'min_lesson_length' sampler_parameter to determine this value. |
|
:param behavior_name: The name of the behavior the minimum reward buffer |
|
size corresponds to. |
|
""" |
|
result = 1 |
|
for settings in self._dict_settings.values(): |
|
for lesson in settings.curriculum: |
|
if lesson.completion_criteria is not None: |
|
if lesson.completion_criteria.behavior == behavior_name: |
|
result = max( |
|
result, lesson.completion_criteria.min_lesson_length |
|
) |
|
return result |
|
|
|
def get_current_samplers(self) -> Dict[str, ParameterRandomizationSettings]: |
|
""" |
|
Creates a dictionary from environment parameter name to their corresponding |
|
ParameterRandomizationSettings. If curriculum is used, the |
|
ParameterRandomizationSettings corresponds to the sampler of the current lesson. |
|
""" |
|
samplers: Dict[str, ParameterRandomizationSettings] = {} |
|
for param_name, settings in self._dict_settings.items(): |
|
lesson_num = GlobalTrainingStatus.get_parameter_state( |
|
param_name, StatusType.LESSON_NUM |
|
) |
|
lesson = settings.curriculum[lesson_num] |
|
samplers[param_name] = lesson.value |
|
return samplers |
|
|
|
def get_current_lesson_number(self) -> Dict[str, int]: |
|
""" |
|
Creates a dictionary from environment parameter to the current lesson number. |
|
If not using curriculum, this number is always 0 for that environment parameter. |
|
""" |
|
result: Dict[str, int] = {} |
|
for parameter_name in self._dict_settings.keys(): |
|
result[parameter_name] = GlobalTrainingStatus.get_parameter_state( |
|
parameter_name, StatusType.LESSON_NUM |
|
) |
|
return result |
|
|
|
def log_current_lesson(self, parameter_name: Optional[str] = None) -> None: |
|
""" |
|
Logs the current lesson number and sampler value of the parameter with name |
|
parameter_name. If no parameter_name is provided, the values and lesson |
|
numbers of all parameters will be displayed. |
|
""" |
|
if parameter_name is not None: |
|
settings = self._dict_settings[parameter_name] |
|
lesson_number = GlobalTrainingStatus.get_parameter_state( |
|
parameter_name, StatusType.LESSON_NUM |
|
) |
|
lesson_name = settings.curriculum[lesson_number].name |
|
lesson_value = settings.curriculum[lesson_number].value |
|
logger.info( |
|
f"Parameter '{parameter_name}' is in lesson '{lesson_name}' " |
|
f"and has value '{lesson_value}'." |
|
) |
|
else: |
|
for parameter_name, settings in self._dict_settings.items(): |
|
lesson_number = GlobalTrainingStatus.get_parameter_state( |
|
parameter_name, StatusType.LESSON_NUM |
|
) |
|
lesson_name = settings.curriculum[lesson_number].name |
|
lesson_value = settings.curriculum[lesson_number].value |
|
logger.info( |
|
f"Parameter '{parameter_name}' is in lesson '{lesson_name}' " |
|
f"and has value '{lesson_value}'." |
|
) |
|
|
|
def update_lessons( |
|
self, |
|
trainer_steps: Dict[str, int], |
|
trainer_max_steps: Dict[str, int], |
|
trainer_reward_buffer: Dict[str, List[float]], |
|
) -> Tuple[bool, bool]: |
|
""" |
|
Given progress metrics, calculates if at least one environment parameter is |
|
in a new lesson and if at least one environment parameter requires the env |
|
to reset. |
|
:param trainer_steps: A dictionary from behavior_name to the number of training |
|
steps this behavior's trainer has performed. |
|
:param trainer_max_steps: A dictionary from behavior_name to the maximum number |
|
of training steps this behavior's trainer has performed. |
|
:param trainer_reward_buffer: A dictionary from behavior_name to the list of |
|
the most recent episode returns for this behavior's trainer. |
|
:returns: A tuple of two booleans : (True if any lesson has changed, True if |
|
environment needs to reset) |
|
""" |
|
must_reset = False |
|
updated = False |
|
for param_name, settings in self._dict_settings.items(): |
|
lesson_num = GlobalTrainingStatus.get_parameter_state( |
|
param_name, StatusType.LESSON_NUM |
|
) |
|
next_lesson_num = lesson_num + 1 |
|
lesson = settings.curriculum[lesson_num] |
|
if ( |
|
lesson.completion_criteria is not None |
|
and len(settings.curriculum) > next_lesson_num |
|
): |
|
behavior_to_consider = lesson.completion_criteria.behavior |
|
if behavior_to_consider in trainer_steps: |
|
( |
|
must_increment, |
|
new_smoothing, |
|
) = lesson.completion_criteria.need_increment( |
|
float(trainer_steps[behavior_to_consider]) |
|
/ float(trainer_max_steps[behavior_to_consider]), |
|
trainer_reward_buffer[behavior_to_consider], |
|
self._smoothed_values[param_name], |
|
) |
|
self._smoothed_values[param_name] = new_smoothing |
|
if must_increment: |
|
GlobalTrainingStatus.set_parameter_state( |
|
param_name, StatusType.LESSON_NUM, next_lesson_num |
|
) |
|
self.log_current_lesson(param_name) |
|
updated = True |
|
if lesson.completion_criteria.require_reset: |
|
must_reset = True |
|
return updated, must_reset |
|
|