|
from collections import defaultdict |
|
from enum import Enum |
|
from typing import List, Dict, NamedTuple, Any, Optional |
|
import numpy as np |
|
import abc |
|
import os |
|
import time |
|
from threading import RLock |
|
|
|
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod |
|
|
|
from mlagents_envs.logging_util import get_logger |
|
from mlagents_envs.timers import set_gauge |
|
from torch.utils.tensorboard import SummaryWriter |
|
from mlagents.torch_utils.globals import get_rank |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def _dict_to_str(param_dict: Dict[str, Any], num_tabs: int) -> str: |
|
""" |
|
Takes a parameter dictionary and converts it to a human-readable string. |
|
Recurses if there are multiple levels of dict. Used to print out hyperparameters. |
|
|
|
:param param_dict: A Dictionary of key, value parameters. |
|
:return: A string version of this dictionary. |
|
""" |
|
if not isinstance(param_dict, dict): |
|
return str(param_dict) |
|
else: |
|
append_newline = "\n" if num_tabs > 0 else "" |
|
return append_newline + "\n".join( |
|
[ |
|
"\t" |
|
+ " " * num_tabs |
|
+ f"{x}:\t{_dict_to_str(param_dict[x], num_tabs + 1)}" |
|
for x in param_dict |
|
] |
|
) |
|
|
|
|
|
class StatsSummary(NamedTuple): |
|
full_dist: List[float] |
|
aggregation_method: StatsAggregationMethod |
|
|
|
@staticmethod |
|
def empty() -> "StatsSummary": |
|
return StatsSummary([], StatsAggregationMethod.AVERAGE) |
|
|
|
@property |
|
def aggregated_value(self): |
|
if self.aggregation_method == StatsAggregationMethod.SUM: |
|
return self.sum |
|
else: |
|
return self.mean |
|
|
|
@property |
|
def mean(self): |
|
return np.mean(self.full_dist) |
|
|
|
@property |
|
def std(self): |
|
return np.std(self.full_dist) |
|
|
|
@property |
|
def num(self): |
|
return len(self.full_dist) |
|
|
|
@property |
|
def sum(self): |
|
return np.sum(self.full_dist) |
|
|
|
|
|
class StatsPropertyType(Enum): |
|
HYPERPARAMETERS = "hyperparameters" |
|
SELF_PLAY = "selfplay" |
|
|
|
|
|
class StatsWriter(abc.ABC): |
|
""" |
|
A StatsWriter abstract class. A StatsWriter takes in a category, key, scalar value, and step |
|
and writes it out by some method. |
|
""" |
|
|
|
def on_add_stat( |
|
self, |
|
category: str, |
|
key: str, |
|
value: float, |
|
aggregation: StatsAggregationMethod = StatsAggregationMethod.AVERAGE, |
|
) -> None: |
|
""" |
|
Callback method for handling an individual stat value as reported to the StatsReporter add_stat |
|
or set_stat methods. |
|
|
|
:param category: Category of the statistics. Usually this is the behavior name. |
|
:param key: The type of statistic, e.g. Environment/Reward. |
|
:param value: The value of the statistic. |
|
:param aggregation: The aggregation method for the statistic, default StatsAggregationMethod.AVERAGE. |
|
""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def write_stats( |
|
self, category: str, values: Dict[str, StatsSummary], step: int |
|
) -> None: |
|
""" |
|
Callback to record training information |
|
:param category: Category of the statistics. Usually this is the behavior name. |
|
:param values: Dictionary of statistics. |
|
:param step: The current training step. |
|
:return: |
|
""" |
|
pass |
|
|
|
def add_property( |
|
self, category: str, property_type: StatsPropertyType, value: Any |
|
) -> None: |
|
""" |
|
Add a generic property to the StatsWriter. This could be e.g. a Dict of hyperparameters, |
|
a max step count, a trainer type, etc. Note that not all StatsWriters need to be compatible |
|
with all types of properties. For instance, a TB writer doesn't need a max step. |
|
|
|
:param category: The category that the property belongs to. |
|
:param property_type: The type of property. |
|
:param value: The property itself. |
|
""" |
|
pass |
|
|
|
|
|
class GaugeWriter(StatsWriter): |
|
""" |
|
Write all stats that we receive to the timer gauges, so we can track them offline easily |
|
""" |
|
|
|
@staticmethod |
|
def sanitize_string(s: str) -> str: |
|
""" |
|
Clean up special characters in the category and value names. |
|
""" |
|
return s.replace("/", ".").replace(" ", "") |
|
|
|
def write_stats( |
|
self, category: str, values: Dict[str, StatsSummary], step: int |
|
) -> None: |
|
for val, stats_summary in values.items(): |
|
set_gauge( |
|
GaugeWriter.sanitize_string(f"{category}.{val}.mean"), |
|
float(stats_summary.mean), |
|
) |
|
set_gauge( |
|
GaugeWriter.sanitize_string(f"{category}.{val}.sum"), |
|
float(stats_summary.sum), |
|
) |
|
|
|
|
|
class ConsoleWriter(StatsWriter): |
|
def __init__(self): |
|
self.training_start_time = time.time() |
|
|
|
self.self_play = False |
|
self.self_play_team = -1 |
|
self.rank = get_rank() |
|
|
|
def write_stats( |
|
self, category: str, values: Dict[str, StatsSummary], step: int |
|
) -> None: |
|
is_training = "Not Training" |
|
if "Is Training" in values: |
|
stats_summary = values["Is Training"] |
|
if stats_summary.aggregated_value > 0.0: |
|
is_training = "Training" |
|
|
|
elapsed_time = time.time() - self.training_start_time |
|
log_info: List[str] = [category] |
|
log_info.append(f"Step: {step}") |
|
log_info.append(f"Time Elapsed: {elapsed_time:0.3f} s") |
|
if "Environment/Cumulative Reward" in values: |
|
stats_summary = values["Environment/Cumulative Reward"] |
|
if self.rank is not None: |
|
log_info.append(f"Rank: {self.rank}") |
|
|
|
log_info.append(f"Mean Reward: {stats_summary.mean:0.3f}") |
|
if "Environment/Group Cumulative Reward" in values: |
|
group_stats_summary = values["Environment/Group Cumulative Reward"] |
|
log_info.append(f"Mean Group Reward: {group_stats_summary.mean:0.3f}") |
|
else: |
|
log_info.append(f"Std of Reward: {stats_summary.std:0.3f}") |
|
log_info.append(is_training) |
|
|
|
if self.self_play and "Self-play/ELO" in values: |
|
elo_stats = values["Self-play/ELO"] |
|
log_info.append(f"ELO: {elo_stats.mean:0.3f}") |
|
else: |
|
log_info.append("No episode was completed since last summary") |
|
log_info.append(is_training) |
|
logger.info(". ".join(log_info) + ".") |
|
|
|
def add_property( |
|
self, category: str, property_type: StatsPropertyType, value: Any |
|
) -> None: |
|
if property_type == StatsPropertyType.HYPERPARAMETERS: |
|
logger.info( |
|
"""Hyperparameters for behavior name {}: \n{}""".format( |
|
category, _dict_to_str(value, 0) |
|
) |
|
) |
|
elif property_type == StatsPropertyType.SELF_PLAY: |
|
assert isinstance(value, bool) |
|
self.self_play = value |
|
|
|
|
|
class TensorboardWriter(StatsWriter): |
|
def __init__( |
|
self, |
|
base_dir: str, |
|
clear_past_data: bool = False, |
|
hidden_keys: Optional[List[str]] = None, |
|
): |
|
""" |
|
A StatsWriter that writes to a Tensorboard summary. |
|
|
|
:param base_dir: The directory within which to place all the summaries. Tensorboard files will be written to a |
|
{base_dir}/{category} directory. |
|
:param clear_past_data: Whether or not to clean up existing Tensorboard files associated with the base_dir and |
|
category. |
|
:param hidden_keys: If provided, Tensorboard Writer won't write statistics identified with these Keys in |
|
Tensorboard summary. |
|
""" |
|
self.summary_writers: Dict[str, SummaryWriter] = {} |
|
self.base_dir: str = base_dir |
|
self._clear_past_data = clear_past_data |
|
self.hidden_keys: List[str] = hidden_keys if hidden_keys is not None else [] |
|
|
|
def write_stats( |
|
self, category: str, values: Dict[str, StatsSummary], step: int |
|
) -> None: |
|
self._maybe_create_summary_writer(category) |
|
for key, value in values.items(): |
|
if key in self.hidden_keys: |
|
continue |
|
self.summary_writers[category].add_scalar( |
|
f"{key}", value.aggregated_value, step |
|
) |
|
if value.aggregation_method == StatsAggregationMethod.HISTOGRAM: |
|
self.summary_writers[category].add_histogram( |
|
f"{key}_hist", np.array(value.full_dist), step |
|
) |
|
self.summary_writers[category].flush() |
|
|
|
def _maybe_create_summary_writer(self, category: str) -> None: |
|
if category not in self.summary_writers: |
|
filewriter_dir = "{basedir}/{category}".format( |
|
basedir=self.base_dir, category=category |
|
) |
|
os.makedirs(filewriter_dir, exist_ok=True) |
|
if self._clear_past_data: |
|
self._delete_all_events_files(filewriter_dir) |
|
self.summary_writers[category] = SummaryWriter(filewriter_dir) |
|
|
|
def _delete_all_events_files(self, directory_name: str) -> None: |
|
for file_name in os.listdir(directory_name): |
|
if file_name.startswith("events.out"): |
|
logger.warning( |
|
f"Deleting TensorBoard data {file_name} that was left over from a " |
|
"previous run." |
|
) |
|
full_fname = os.path.join(directory_name, file_name) |
|
try: |
|
os.remove(full_fname) |
|
except OSError: |
|
logger.error( |
|
"{} was left over from a previous run and " |
|
"not deleted.".format(full_fname) |
|
) |
|
|
|
def add_property( |
|
self, category: str, property_type: StatsPropertyType, value: Any |
|
) -> None: |
|
if property_type == StatsPropertyType.HYPERPARAMETERS: |
|
assert isinstance(value, dict) |
|
summary = _dict_to_str(value, 0) |
|
self._maybe_create_summary_writer(category) |
|
if summary is not None: |
|
self.summary_writers[category].add_text("Hyperparameters", summary) |
|
self.summary_writers[category].flush() |
|
|
|
|
|
class StatsReporter: |
|
writers: List[StatsWriter] = [] |
|
stats_dict: Dict[str, Dict[str, List]] = defaultdict(lambda: defaultdict(list)) |
|
lock = RLock() |
|
stats_aggregation: Dict[str, Dict[str, StatsAggregationMethod]] = defaultdict( |
|
lambda: defaultdict(lambda: StatsAggregationMethod.AVERAGE) |
|
) |
|
|
|
def __init__(self, category: str): |
|
""" |
|
Generic StatsReporter. A category is the broadest type of storage (would |
|
correspond the run name and trainer name, e.g. 3DBalltest_3DBall. A key is the |
|
type of stat it is (e.g. Environment/Reward). Finally the Value is the float value |
|
attached to this stat. |
|
""" |
|
self.category: str = category |
|
|
|
@staticmethod |
|
def add_writer(writer: StatsWriter) -> None: |
|
with StatsReporter.lock: |
|
StatsReporter.writers.append(writer) |
|
|
|
def add_property(self, property_type: StatsPropertyType, value: Any) -> None: |
|
""" |
|
Add a generic property to the StatsReporter. This could be e.g. a Dict of hyperparameters, |
|
a max step count, a trainer type, etc. Note that not all StatsWriters need to be compatible |
|
with all types of properties. For instance, a TB writer doesn't need a max step. |
|
|
|
:param property_type: The type of property. |
|
:param value: The property itself. |
|
""" |
|
with StatsReporter.lock: |
|
for writer in StatsReporter.writers: |
|
writer.add_property(self.category, property_type, value) |
|
|
|
def add_stat( |
|
self, |
|
key: str, |
|
value: float, |
|
aggregation: StatsAggregationMethod = StatsAggregationMethod.AVERAGE, |
|
) -> None: |
|
""" |
|
Add a float value stat to the StatsReporter. |
|
|
|
:param key: The type of statistic, e.g. Environment/Reward. |
|
:param value: the value of the statistic. |
|
:param aggregation: the aggregation method for the statistic, default StatsAggregationMethod.AVERAGE. |
|
""" |
|
with StatsReporter.lock: |
|
StatsReporter.stats_dict[self.category][key].append(value) |
|
StatsReporter.stats_aggregation[self.category][key] = aggregation |
|
for writer in StatsReporter.writers: |
|
writer.on_add_stat(self.category, key, value, aggregation) |
|
|
|
def set_stat(self, key: str, value: float) -> None: |
|
""" |
|
Sets a stat value to a float. This is for values that we don't want to average, and just |
|
want the latest. |
|
|
|
:param key: The type of statistic, e.g. Environment/Reward. |
|
:param value: the value of the statistic. |
|
""" |
|
with StatsReporter.lock: |
|
StatsReporter.stats_dict[self.category][key] = [value] |
|
StatsReporter.stats_aggregation[self.category][ |
|
key |
|
] = StatsAggregationMethod.MOST_RECENT |
|
for writer in StatsReporter.writers: |
|
writer.on_add_stat( |
|
self.category, key, value, StatsAggregationMethod.MOST_RECENT |
|
) |
|
|
|
def write_stats(self, step: int) -> None: |
|
""" |
|
Write out all stored statistics that fall under the category specified. |
|
The currently stored values will be averaged, written out as a single value, |
|
and the buffer cleared. |
|
|
|
:param step: Training step which to write these stats as. |
|
""" |
|
with StatsReporter.lock: |
|
values: Dict[str, StatsSummary] = {} |
|
for key in StatsReporter.stats_dict[self.category]: |
|
if len(StatsReporter.stats_dict[self.category][key]) > 0: |
|
stat_summary = self.get_stats_summaries(key) |
|
values[key] = stat_summary |
|
for writer in StatsReporter.writers: |
|
writer.write_stats(self.category, values, step) |
|
del StatsReporter.stats_dict[self.category] |
|
|
|
def get_stats_summaries(self, key: str) -> StatsSummary: |
|
""" |
|
Get the mean, std, count, sum and aggregation method of a particular statistic, since last write. |
|
|
|
:param key: The type of statistic, e.g. Environment/Reward. |
|
:returns: A StatsSummary containing summary statistics. |
|
""" |
|
stat_values = StatsReporter.stats_dict[self.category][key] |
|
if len(stat_values) == 0: |
|
return StatsSummary.empty() |
|
|
|
return StatsSummary( |
|
full_dist=stat_values, |
|
aggregation_method=StatsReporter.stats_aggregation[self.category][key], |
|
) |
|
|