|
import numpy as np |
|
from mlagents.trainers.buffer import ( |
|
AgentBuffer, |
|
AgentBufferField, |
|
BufferKey, |
|
ObservationKeyPrefix, |
|
RewardSignalKeyPrefix, |
|
) |
|
from mlagents.trainers.trajectory import ObsUtil |
|
|
|
|
|
def assert_array(a, b): |
|
assert a.shape == b.shape |
|
la = list(a.flatten()) |
|
lb = list(b.flatten()) |
|
for i in range(len(la)): |
|
assert la[i] == lb[i] |
|
|
|
|
|
def construct_fake_buffer(fake_agent_id): |
|
b = AgentBuffer() |
|
for step in range(9): |
|
b[ObsUtil.get_name_at(0)].append( |
|
np.array( |
|
[ |
|
100 * fake_agent_id + 10 * step + 1, |
|
100 * fake_agent_id + 10 * step + 2, |
|
100 * fake_agent_id + 10 * step + 3, |
|
], |
|
dtype=np.float32, |
|
) |
|
) |
|
b[BufferKey.CONTINUOUS_ACTION].append( |
|
np.array( |
|
[ |
|
100 * fake_agent_id + 10 * step + 4, |
|
100 * fake_agent_id + 10 * step + 5, |
|
], |
|
dtype=np.float32, |
|
) |
|
) |
|
b[BufferKey.GROUP_CONTINUOUS_ACTION].append( |
|
[ |
|
np.array( |
|
[ |
|
100 * fake_agent_id + 10 * step + 4, |
|
100 * fake_agent_id + 10 * step + 5, |
|
], |
|
dtype=np.float32, |
|
) |
|
] |
|
* 3 |
|
) |
|
return b |
|
|
|
|
|
def test_buffer(): |
|
agent_1_buffer = construct_fake_buffer(1) |
|
agent_2_buffer = construct_fake_buffer(2) |
|
agent_3_buffer = construct_fake_buffer(3) |
|
|
|
|
|
a = agent_1_buffer[ObsUtil.get_name_at(0)].get_batch( |
|
batch_size=2, training_length=1, sequential=True |
|
) |
|
assert_array( |
|
np.array(a), np.array([[171, 172, 173], [181, 182, 183]], dtype=np.float32) |
|
) |
|
|
|
|
|
a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( |
|
batch_size=2, training_length=3, sequential=True |
|
) |
|
assert_array( |
|
np.array(a), |
|
np.array( |
|
[ |
|
[231, 232, 233], |
|
[241, 242, 243], |
|
[251, 252, 253], |
|
[261, 262, 263], |
|
[271, 272, 273], |
|
[281, 282, 283], |
|
], |
|
dtype=np.float32, |
|
), |
|
) |
|
a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( |
|
batch_size=2, training_length=3, sequential=False |
|
) |
|
assert_array( |
|
np.array(a), |
|
np.array( |
|
[ |
|
[251, 252, 253], |
|
[261, 262, 263], |
|
[271, 272, 273], |
|
[261, 262, 263], |
|
[271, 272, 273], |
|
[281, 282, 283], |
|
] |
|
), |
|
) |
|
|
|
|
|
a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( |
|
batch_size=None, training_length=4, sequential=True |
|
) |
|
assert_array( |
|
np.array(a), |
|
np.array( |
|
[ |
|
[201, 202, 203], |
|
[211, 212, 213], |
|
[221, 222, 223], |
|
[231, 232, 233], |
|
[241, 242, 243], |
|
[251, 252, 253], |
|
[261, 262, 263], |
|
[271, 272, 273], |
|
[281, 282, 283], |
|
[0, 0, 0], |
|
[0, 0, 0], |
|
[0, 0, 0], |
|
] |
|
), |
|
) |
|
|
|
a = agent_2_buffer[BufferKey.GROUP_CONTINUOUS_ACTION].get_batch( |
|
batch_size=None, training_length=4, sequential=True |
|
) |
|
for _group_entry in a[:-3]: |
|
assert len(_group_entry) == 3 |
|
for _group_entry in a[-3:]: |
|
assert len(_group_entry) == 0 |
|
|
|
agent_1_buffer.reset_agent() |
|
assert agent_1_buffer.num_experiences == 0 |
|
update_buffer = AgentBuffer() |
|
agent_2_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
agent_3_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20 |
|
|
|
assert np.array(update_buffer[BufferKey.CONTINUOUS_ACTION]).shape == (20, 2) |
|
|
|
c = update_buffer.make_mini_batch(start=0, end=1) |
|
assert c.keys() == update_buffer.keys() |
|
|
|
for val in c.values(): |
|
assert isinstance(val, AgentBufferField) |
|
assert np.array(c[BufferKey.CONTINUOUS_ACTION]).shape == (1, 2) |
|
|
|
|
|
def test_agentbufferfield(): |
|
|
|
a = AgentBufferField([0, 1, 2]) |
|
for i, num in enumerate(a): |
|
assert num == i |
|
|
|
assert a[i] == num |
|
|
|
|
|
b = a[1:3] |
|
assert b == [1, 2] |
|
assert isinstance(b, AgentBufferField) |
|
|
|
|
|
c = AgentBufferField() |
|
for _ in range(2): |
|
c.append([np.array(1), np.array(2)]) |
|
|
|
for _ in range(2): |
|
c.append([np.array(1)]) |
|
|
|
padded = c.padded_to_batch(pad_value=3) |
|
assert np.array_equal(padded[0], np.array([1, 1, 1, 1])) |
|
assert np.array_equal(padded[1], np.array([2, 2, 3, 3])) |
|
|
|
|
|
padded_a = a.padded_to_batch() |
|
assert np.array_equal(padded_a, a) |
|
|
|
|
|
def fakerandint(values): |
|
return 19 |
|
|
|
|
|
def test_buffer_sample(): |
|
agent_1_buffer = construct_fake_buffer(1) |
|
agent_2_buffer = construct_fake_buffer(2) |
|
update_buffer = AgentBuffer() |
|
agent_1_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
agent_2_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
|
|
mb = update_buffer.sample_mini_batch(batch_size=4, sequence_length=1) |
|
assert mb.keys() == update_buffer.keys() |
|
assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (4, 2) |
|
|
|
|
|
|
|
mb = update_buffer.sample_mini_batch(batch_size=20, sequence_length=19) |
|
assert mb.keys() == update_buffer.keys() |
|
|
|
assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (19, 2) |
|
|
|
|
|
def test_num_experiences(): |
|
agent_1_buffer = construct_fake_buffer(1) |
|
agent_2_buffer = construct_fake_buffer(2) |
|
update_buffer = AgentBuffer() |
|
|
|
assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 0 |
|
assert update_buffer.num_experiences == 0 |
|
agent_1_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
agent_2_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
|
|
assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20 |
|
assert update_buffer.num_experiences == 20 |
|
|
|
|
|
def test_buffer_truncate(): |
|
agent_1_buffer = construct_fake_buffer(1) |
|
agent_2_buffer = construct_fake_buffer(2) |
|
update_buffer = AgentBuffer() |
|
agent_1_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
agent_2_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
|
|
update_buffer.truncate(2) |
|
assert update_buffer.num_experiences == 2 |
|
|
|
agent_1_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
agent_2_buffer.resequence_and_append( |
|
update_buffer, batch_size=None, training_length=2 |
|
) |
|
|
|
update_buffer.truncate(4, sequence_length=3) |
|
assert update_buffer.num_experiences == 3 |
|
for buffer_field in update_buffer.values(): |
|
assert isinstance(buffer_field, AgentBufferField) |
|
|
|
|
|
def test_key_encode_decode(): |
|
keys = ( |
|
list(BufferKey) |
|
+ [(k, 42) for k in ObservationKeyPrefix] |
|
+ [(k, "gail") for k in RewardSignalKeyPrefix] |
|
) |
|
for k in keys: |
|
assert k == AgentBuffer._decode_key(AgentBuffer._encode_key(k)) |
|
|
|
|
|
def test_buffer_save_load(): |
|
original = construct_fake_buffer(3) |
|
import io |
|
|
|
write_buffer = io.BytesIO() |
|
original.save_to_file(write_buffer) |
|
|
|
loaded = AgentBuffer() |
|
loaded.load_from_file(write_buffer) |
|
|
|
assert len(original) == len(loaded) |
|
for k in original.keys(): |
|
assert np.allclose(original[k], loaded[k]) |
|
|