|
import io |
|
import numpy as np |
|
import pytest |
|
from typing import List, Tuple, Any |
|
|
|
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto |
|
from mlagents_envs.communicator_objects.observation_pb2 import ( |
|
ObservationProto, |
|
NONE, |
|
PNG, |
|
) |
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto |
|
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import ( |
|
AgentInfoActionPairProto, |
|
) |
|
from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto |
|
from mlagents_envs.base_env import ( |
|
BehaviorSpec, |
|
ActionSpec, |
|
DecisionSteps, |
|
TerminalSteps, |
|
) |
|
from mlagents_envs.exception import UnityObservationException |
|
from mlagents_envs.rpc_utils import ( |
|
behavior_spec_from_proto, |
|
process_pixels, |
|
_process_maybe_compressed_observation, |
|
_process_rank_one_or_two_observation, |
|
steps_from_proto, |
|
) |
|
from PIL import Image |
|
from mlagents.trainers.tests.dummy_config import create_observation_specs_with_shapes |
|
|
|
|
|
def generate_list_agent_proto( |
|
n_agent: int, |
|
shape: List[Tuple[int]], |
|
infinite_rewards: bool = False, |
|
nan_observations: bool = False, |
|
) -> List[AgentInfoProto]: |
|
result = [] |
|
for agent_index in range(n_agent): |
|
ap = AgentInfoProto() |
|
ap.reward = float("inf") if infinite_rewards else agent_index |
|
ap.done = agent_index % 2 == 0 |
|
ap.max_step_reached = agent_index % 4 == 0 |
|
ap.id = agent_index |
|
ap.action_mask.extend([True, False] * 5) |
|
obs_proto_list = [] |
|
for obs_index in range(len(shape)): |
|
obs_proto = ObservationProto() |
|
obs_proto.shape.extend(list(shape[obs_index])) |
|
obs_proto.compression_type = NONE |
|
obs_proto.float_data.data.extend( |
|
([float("nan")] if nan_observations else [0.1]) |
|
* np.prod(shape[obs_index]) |
|
) |
|
obs_proto_list.append(obs_proto) |
|
ap.observations.extend(obs_proto_list) |
|
result.append(ap) |
|
return result |
|
|
|
|
|
def generate_compressed_data(in_array: np.ndarray) -> bytes: |
|
image_arr = (in_array * 255).astype(np.uint8) |
|
bytes_out = bytes() |
|
|
|
num_channels = in_array.shape[2] |
|
num_images = (num_channels + 2) // 3 |
|
|
|
for i in range(num_images): |
|
sub_image = image_arr[..., 3 * i : 3 * i + 3] |
|
if (i == num_images - 1) and (num_channels % 3) != 0: |
|
|
|
zero_shape = list(in_array.shape) |
|
zero_shape[2] = 3 - (num_channels % 3) |
|
z = np.zeros(zero_shape, dtype=np.uint8) |
|
sub_image = np.concatenate([sub_image, z], axis=2) |
|
im = Image.fromarray(sub_image, "RGB") |
|
byteIO = io.BytesIO() |
|
im.save(byteIO, format="PNG") |
|
bytes_out += byteIO.getvalue() |
|
return bytes_out |
|
|
|
|
|
|
|
def generate_compressed_proto_obs( |
|
in_array: np.ndarray, grayscale: bool = False |
|
) -> ObservationProto: |
|
obs_proto = ObservationProto() |
|
obs_proto.compressed_data = generate_compressed_data(in_array) |
|
obs_proto.compression_type = PNG |
|
if grayscale: |
|
|
|
expected_shape = [in_array.shape[0], in_array.shape[1], 1] |
|
obs_proto.shape.extend(expected_shape) |
|
else: |
|
obs_proto.shape.extend(in_array.shape) |
|
return obs_proto |
|
|
|
|
|
|
|
def generate_compressed_proto_obs_with_mapping( |
|
in_array: np.ndarray, mapping: List[int] |
|
) -> ObservationProto: |
|
obs_proto = ObservationProto() |
|
obs_proto.compressed_data = generate_compressed_data(in_array) |
|
obs_proto.compression_type = PNG |
|
if mapping is not None: |
|
obs_proto.compressed_channel_mapping.extend(mapping) |
|
expected_shape = [ |
|
in_array.shape[0], |
|
in_array.shape[1], |
|
len({m for m in mapping if m >= 0}), |
|
] |
|
obs_proto.shape.extend(expected_shape) |
|
else: |
|
obs_proto.shape.extend(in_array.shape) |
|
return obs_proto |
|
|
|
|
|
def generate_uncompressed_proto_obs(in_array: np.ndarray) -> ObservationProto: |
|
obs_proto = ObservationProto() |
|
obs_proto.float_data.data.extend(in_array.flatten().tolist()) |
|
obs_proto.compression_type = NONE |
|
obs_proto.shape.extend(in_array.shape) |
|
return obs_proto |
|
|
|
|
|
def proto_from_steps( |
|
decision_steps: DecisionSteps, terminal_steps: TerminalSteps |
|
) -> List[AgentInfoProto]: |
|
agent_info_protos: List[AgentInfoProto] = [] |
|
|
|
for agent_id in decision_steps.agent_id: |
|
agent_id_index = decision_steps.agent_id_to_index[agent_id] |
|
reward = decision_steps.reward[agent_id_index] |
|
done = False |
|
max_step_reached = False |
|
agent_mask: Any = None |
|
if decision_steps.action_mask is not None: |
|
agent_mask = [] |
|
for _branch in decision_steps.action_mask: |
|
agent_mask = np.concatenate( |
|
(agent_mask, _branch[agent_id_index, :]), axis=0 |
|
) |
|
agent_mask = agent_mask.astype(np.bool).tolist() |
|
observations: List[ObservationProto] = [] |
|
for all_observations_of_type in decision_steps.obs: |
|
observation = all_observations_of_type[agent_id_index] |
|
if len(observation.shape) == 3: |
|
observations.append(generate_uncompressed_proto_obs(observation)) |
|
else: |
|
observations.append( |
|
ObservationProto( |
|
float_data=ObservationProto.FloatData(data=observation), |
|
shape=[len(observation)], |
|
compression_type=NONE, |
|
) |
|
) |
|
agent_info_proto = AgentInfoProto( |
|
reward=reward, |
|
done=done, |
|
id=agent_id, |
|
max_step_reached=bool(max_step_reached), |
|
action_mask=agent_mask, |
|
observations=observations, |
|
) |
|
agent_info_protos.append(agent_info_proto) |
|
|
|
for agent_id in terminal_steps.agent_id: |
|
agent_id_index = terminal_steps.agent_id_to_index[agent_id] |
|
reward = terminal_steps.reward[agent_id_index] |
|
done = True |
|
max_step_reached = terminal_steps.interrupted[agent_id_index] |
|
|
|
final_observations: List[ObservationProto] = [] |
|
for all_observations_of_type in terminal_steps.obs: |
|
observation = all_observations_of_type[agent_id_index] |
|
if len(observation.shape) == 3: |
|
final_observations.append(generate_uncompressed_proto_obs(observation)) |
|
else: |
|
final_observations.append( |
|
ObservationProto( |
|
float_data=ObservationProto.FloatData(data=observation), |
|
shape=[len(observation)], |
|
compression_type=NONE, |
|
) |
|
) |
|
agent_info_proto = AgentInfoProto( |
|
reward=reward, |
|
done=done, |
|
id=agent_id, |
|
max_step_reached=bool(max_step_reached), |
|
action_mask=None, |
|
observations=final_observations, |
|
) |
|
agent_info_protos.append(agent_info_proto) |
|
|
|
return agent_info_protos |
|
|
|
|
|
|
|
def proto_from_steps_and_action( |
|
decision_steps: DecisionSteps, |
|
terminal_steps: TerminalSteps, |
|
continuous_actions: np.ndarray, |
|
discrete_actions: np.ndarray, |
|
) -> List[AgentInfoActionPairProto]: |
|
agent_info_protos = proto_from_steps(decision_steps, terminal_steps) |
|
agent_action_protos = [] |
|
num_agents = ( |
|
len(continuous_actions) |
|
if continuous_actions is not None |
|
else len(discrete_actions) |
|
) |
|
for i in range(num_agents): |
|
proto = AgentActionProto() |
|
if continuous_actions is not None: |
|
proto.continuous_actions.extend(continuous_actions[i]) |
|
proto.vector_actions_deprecated.extend(continuous_actions[i]) |
|
if discrete_actions is not None: |
|
proto.discrete_actions.extend(discrete_actions[i]) |
|
proto.vector_actions_deprecated.extend(discrete_actions[i]) |
|
agent_action_protos.append(proto) |
|
agent_info_action_pair_protos = [ |
|
AgentInfoActionPairProto(agent_info=agent_info_proto, action_info=action_proto) |
|
for agent_info_proto, action_proto in zip( |
|
agent_info_protos, agent_action_protos |
|
) |
|
] |
|
return agent_info_action_pair_protos |
|
|
|
|
|
def test_process_pixels(): |
|
in_array = np.random.rand(128, 64, 3) |
|
byte_arr = generate_compressed_data(in_array) |
|
out_array = process_pixels(byte_arr, 3) |
|
assert out_array.shape == (128, 64, 3) |
|
assert np.sum(in_array - out_array) / np.prod(in_array.shape) < 0.01 |
|
assert np.allclose(in_array, out_array, atol=0.01) |
|
|
|
|
|
def test_process_pixels_multi_png(): |
|
height = 128 |
|
width = 64 |
|
num_channels = 7 |
|
in_array = np.random.rand(height, width, num_channels) |
|
byte_arr = generate_compressed_data(in_array) |
|
out_array = process_pixels(byte_arr, num_channels) |
|
assert out_array.shape == (height, width, num_channels) |
|
assert np.sum(in_array - out_array) / np.prod(in_array.shape) < 0.01 |
|
assert np.allclose(in_array, out_array, atol=0.01) |
|
|
|
|
|
def test_process_pixels_gray(): |
|
in_array = np.random.rand(128, 64, 3) |
|
byte_arr = generate_compressed_data(in_array) |
|
out_array = process_pixels(byte_arr, 1) |
|
assert out_array.shape == (128, 64, 1) |
|
assert np.mean(in_array.mean(axis=2, keepdims=True) - out_array) < 0.01 |
|
assert np.allclose(in_array.mean(axis=2, keepdims=True), out_array, atol=0.01) |
|
|
|
|
|
def test_vector_observation(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
obs_specs = create_observation_specs_with_shapes(shapes) |
|
list_proto = generate_list_agent_proto(n_agents, shapes) |
|
for obs_index, shape in enumerate(shapes): |
|
arr = _process_rank_one_or_two_observation( |
|
obs_index, obs_specs[obs_index], list_proto |
|
) |
|
assert list(arr.shape) == ([n_agents] + list(shape)) |
|
assert np.allclose(arr, 0.1, atol=0.01) |
|
|
|
|
|
def test_process_visual_observation(): |
|
shape = (128, 64, 3) |
|
in_array_1 = np.random.rand(*shape) |
|
proto_obs_1 = generate_compressed_proto_obs(in_array_1) |
|
in_array_2 = np.random.rand(*shape) |
|
in_array_2_mapping = [0, 1, 2] |
|
proto_obs_2 = generate_compressed_proto_obs_with_mapping( |
|
in_array_2, in_array_2_mapping |
|
) |
|
|
|
ap1 = AgentInfoProto() |
|
ap1.observations.extend([proto_obs_1]) |
|
ap2 = AgentInfoProto() |
|
ap2.observations.extend([proto_obs_2]) |
|
ap_list = [ap1, ap2] |
|
obs_spec = create_observation_specs_with_shapes([shape])[0] |
|
arr = _process_maybe_compressed_observation(0, obs_spec, ap_list) |
|
assert list(arr.shape) == [2, 128, 64, 3] |
|
assert np.allclose(arr[0, :, :, :], in_array_1, atol=0.01) |
|
assert np.allclose(arr[1, :, :, :], in_array_2, atol=0.01) |
|
|
|
|
|
def test_process_visual_observation_grayscale(): |
|
in_array_1 = np.random.rand(128, 64, 3) |
|
proto_obs_1 = generate_compressed_proto_obs(in_array_1, grayscale=True) |
|
expected_out_array_1 = np.mean(in_array_1, axis=2, keepdims=True) |
|
in_array_2 = np.random.rand(128, 64, 3) |
|
in_array_2_mapping = [0, 0, 0] |
|
proto_obs_2 = generate_compressed_proto_obs_with_mapping( |
|
in_array_2, in_array_2_mapping |
|
) |
|
expected_out_array_2 = np.mean(in_array_2, axis=2, keepdims=True) |
|
|
|
ap1 = AgentInfoProto() |
|
ap1.observations.extend([proto_obs_1]) |
|
ap2 = AgentInfoProto() |
|
ap2.observations.extend([proto_obs_2]) |
|
ap_list = [ap1, ap2] |
|
shape = (128, 64, 1) |
|
obs_spec = create_observation_specs_with_shapes([shape])[0] |
|
arr = _process_maybe_compressed_observation(0, obs_spec, ap_list) |
|
assert list(arr.shape) == [2, 128, 64, 1] |
|
assert np.allclose(arr[0, :, :, :], expected_out_array_1, atol=0.01) |
|
assert np.allclose(arr[1, :, :, :], expected_out_array_2, atol=0.01) |
|
|
|
|
|
def test_process_visual_observation_padded_channels(): |
|
in_array_1 = np.random.rand(128, 64, 12) |
|
in_array_1_mapping = [0, 1, 2, 3, -1, -1, 4, 5, 6, 7, -1, -1] |
|
proto_obs_1 = generate_compressed_proto_obs_with_mapping( |
|
in_array_1, in_array_1_mapping |
|
) |
|
expected_out_array_1 = np.take(in_array_1, [0, 1, 2, 3, 6, 7, 8, 9], axis=2) |
|
|
|
ap1 = AgentInfoProto() |
|
ap1.observations.extend([proto_obs_1]) |
|
ap_list = [ap1] |
|
shape = (128, 64, 8) |
|
obs_spec = create_observation_specs_with_shapes([shape])[0] |
|
|
|
arr = _process_maybe_compressed_observation(0, obs_spec, ap_list) |
|
assert list(arr.shape) == [1, 128, 64, 8] |
|
assert np.allclose(arr[0, :, :, :], expected_out_array_1, atol=0.01) |
|
|
|
|
|
def test_process_visual_observation_bad_shape(): |
|
in_array_1 = np.random.rand(128, 64, 3) |
|
proto_obs_1 = generate_compressed_proto_obs(in_array_1) |
|
ap1 = AgentInfoProto() |
|
ap1.observations.extend([proto_obs_1]) |
|
ap_list = [ap1] |
|
|
|
shape = (128, 42, 3) |
|
obs_spec = create_observation_specs_with_shapes([shape])[0] |
|
|
|
with pytest.raises(UnityObservationException): |
|
_process_maybe_compressed_observation(0, obs_spec, ap_list) |
|
|
|
|
|
def test_batched_step_result_from_proto(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), ActionSpec.create_continuous(3) |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes) |
|
decision_steps, terminal_steps = steps_from_proto(ap_list, spec) |
|
for agent_id in range(n_agents): |
|
if agent_id in decision_steps: |
|
|
|
assert decision_steps[agent_id].reward == agent_id |
|
elif agent_id in terminal_steps: |
|
assert terminal_steps[agent_id].reward == agent_id |
|
else: |
|
raise Exception("Missing agent from the steps") |
|
|
|
combined_agent_id = list(decision_steps.agent_id) + list(terminal_steps.agent_id) |
|
combined_agent_id.sort() |
|
assert combined_agent_id == list(range(n_agents)) |
|
for agent_id in range(n_agents): |
|
assert (agent_id in terminal_steps) == (agent_id % 2 == 0) |
|
if agent_id in terminal_steps: |
|
assert terminal_steps[agent_id].interrupted == (agent_id % 4 == 0) |
|
assert decision_steps.obs[0].shape[1] == shapes[0][0] |
|
assert decision_steps.obs[1].shape[1] == shapes[1][0] |
|
assert terminal_steps.obs[0].shape[1] == shapes[0][0] |
|
assert terminal_steps.obs[1].shape[1] == shapes[1][0] |
|
|
|
|
|
def test_mismatch_observations_raise_in_step_result_from_proto(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), ActionSpec.create_continuous(3) |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes) |
|
|
|
ap_list[0].observations[0].shape[0] += 1 |
|
ap_list[0].observations[0].float_data.data.append(0.42) |
|
with pytest.raises(UnityObservationException): |
|
steps_from_proto(ap_list, spec) |
|
|
|
|
|
def test_action_masking_discrete(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
behavior_spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), ActionSpec.create_discrete((7, 3)) |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes) |
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec) |
|
masks = decision_steps.action_mask |
|
assert isinstance(masks, list) |
|
assert len(masks) == 2 |
|
assert masks[0].shape == (n_agents / 2, 7) |
|
assert masks[1].shape == (n_agents / 2, 3) |
|
assert masks[0][0, 0] |
|
assert not masks[1][0, 0] |
|
assert masks[1][0, 1] |
|
|
|
|
|
def test_action_masking_discrete_1(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
behavior_spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), ActionSpec.create_discrete((10,)) |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes) |
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec) |
|
masks = decision_steps.action_mask |
|
assert isinstance(masks, list) |
|
assert len(masks) == 1 |
|
assert masks[0].shape == (n_agents / 2, 10) |
|
assert masks[0][0, 0] |
|
|
|
|
|
def test_action_masking_discrete_2(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
behavior_spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), |
|
ActionSpec.create_discrete((2, 2, 6)), |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes) |
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec) |
|
masks = decision_steps.action_mask |
|
assert isinstance(masks, list) |
|
assert len(masks) == 3 |
|
assert masks[0].shape == (n_agents / 2, 2) |
|
assert masks[1].shape == (n_agents / 2, 2) |
|
assert masks[2].shape == (n_agents / 2, 6) |
|
assert masks[0][0, 0] |
|
|
|
|
|
def test_action_masking_continuous(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
behavior_spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), ActionSpec.create_continuous(10) |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes) |
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec) |
|
masks = decision_steps.action_mask |
|
assert masks is None |
|
|
|
|
|
def test_agent_behavior_spec_from_proto(): |
|
agent_proto = generate_list_agent_proto(1, [(3,), (4,)])[0] |
|
bp = BrainParametersProto() |
|
bp.vector_action_size_deprecated.extend([5, 4]) |
|
bp.vector_action_space_type_deprecated = 0 |
|
behavior_spec = behavior_spec_from_proto(bp, agent_proto) |
|
assert behavior_spec.action_spec.is_discrete() |
|
assert not behavior_spec.action_spec.is_continuous() |
|
assert [spec.shape for spec in behavior_spec.observation_specs] == [(3,), (4,)] |
|
assert behavior_spec.action_spec.discrete_branches == (5, 4) |
|
assert behavior_spec.action_spec.discrete_size == 2 |
|
bp = BrainParametersProto() |
|
bp.vector_action_size_deprecated.extend([6]) |
|
bp.vector_action_space_type_deprecated = 1 |
|
behavior_spec = behavior_spec_from_proto(bp, agent_proto) |
|
assert not behavior_spec.action_spec.is_discrete() |
|
assert behavior_spec.action_spec.is_continuous() |
|
assert behavior_spec.action_spec.continuous_size == 6 |
|
|
|
|
|
def test_batched_step_result_from_proto_raises_on_infinite(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
behavior_spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), ActionSpec.create_continuous(3) |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes, infinite_rewards=True) |
|
with pytest.raises(RuntimeError): |
|
steps_from_proto(ap_list, behavior_spec) |
|
|
|
|
|
def test_batched_step_result_from_proto_raises_on_nan(): |
|
n_agents = 10 |
|
shapes = [(3,), (4,)] |
|
behavior_spec = BehaviorSpec( |
|
create_observation_specs_with_shapes(shapes), ActionSpec.create_continuous(3) |
|
) |
|
ap_list = generate_list_agent_proto(n_agents, shapes, nan_observations=True) |
|
with pytest.raises(RuntimeError): |
|
steps_from_proto(ap_list, behavior_spec) |
|
|