|
|
|
|
|
"""Launches trainers for each External Brains in a Unity Environment.""" |
|
|
|
import os |
|
import threading |
|
from typing import Dict, Set, List |
|
from collections import defaultdict |
|
|
|
import numpy as np |
|
|
|
from mlagents_envs.logging_util import get_logger |
|
from mlagents.trainers.env_manager import EnvManager, EnvironmentStep |
|
from mlagents_envs.exception import ( |
|
UnityEnvironmentException, |
|
UnityCommunicationException, |
|
UnityCommunicatorStoppedException, |
|
) |
|
from mlagents_envs.timers import ( |
|
hierarchical_timer, |
|
timed, |
|
get_timer_stack_for_thread, |
|
merge_gauges, |
|
) |
|
from mlagents.trainers.trainer import Trainer |
|
from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager |
|
from mlagents.trainers.trainer import TrainerFactory |
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers |
|
from mlagents.trainers.agent_processor import AgentManager |
|
from mlagents import torch_utils |
|
from mlagents.torch_utils.globals import get_rank |
|
|
|
|
|
class TrainerController: |
|
def __init__( |
|
self, |
|
trainer_factory: TrainerFactory, |
|
output_path: str, |
|
run_id: str, |
|
param_manager: EnvironmentParameterManager, |
|
train: bool, |
|
training_seed: int, |
|
): |
|
""" |
|
:param output_path: Path to save the model. |
|
:param summaries_dir: Folder to save training summaries. |
|
:param run_id: The sub-directory name for model and summary statistics |
|
:param param_manager: EnvironmentParameterManager object which stores information about all |
|
environment parameters. |
|
:param train: Whether to train model, or only run inference. |
|
:param training_seed: Seed to use for Numpy and Torch random number generation. |
|
:param threaded: Whether or not to run trainers in a separate thread. Disable for testing/debugging. |
|
""" |
|
self.trainers: Dict[str, Trainer] = {} |
|
self.brain_name_to_identifier: Dict[str, Set] = defaultdict(set) |
|
self.trainer_factory = trainer_factory |
|
self.output_path = output_path |
|
self.logger = get_logger(__name__) |
|
self.run_id = run_id |
|
self.train_model = train |
|
self.param_manager = param_manager |
|
self.ghost_controller = self.trainer_factory.ghost_controller |
|
self.registered_behavior_ids: Set[str] = set() |
|
|
|
self.trainer_threads: List[threading.Thread] = [] |
|
self.kill_trainers = False |
|
np.random.seed(training_seed) |
|
torch_utils.torch.manual_seed(training_seed) |
|
self.rank = get_rank() |
|
|
|
@timed |
|
def _save_models(self): |
|
""" |
|
Saves current model to checkpoint folder. |
|
""" |
|
if self.rank is not None and self.rank != 0: |
|
return |
|
|
|
for brain_name in self.trainers.keys(): |
|
self.trainers[brain_name].save_model() |
|
self.logger.debug("Saved Model") |
|
|
|
@staticmethod |
|
def _create_output_path(output_path): |
|
try: |
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
except Exception: |
|
raise UnityEnvironmentException( |
|
f"The folder {output_path} containing the " |
|
"generated model could not be " |
|
"accessed. Please make sure the " |
|
"permissions are set correctly." |
|
) |
|
|
|
@timed |
|
def _reset_env(self, env_manager: EnvManager) -> None: |
|
"""Resets the environment. |
|
|
|
Returns: |
|
A Data structure corresponding to the initial reset state of the |
|
environment. |
|
""" |
|
new_config = self.param_manager.get_current_samplers() |
|
env_manager.reset(config=new_config) |
|
|
|
self._register_new_behaviors(env_manager, env_manager.first_step_infos) |
|
|
|
def _not_done_training(self) -> bool: |
|
return ( |
|
any(t.should_still_train for t in self.trainers.values()) |
|
or not self.train_model |
|
) or len(self.trainers) == 0 |
|
|
|
def _create_trainer_and_manager( |
|
self, env_manager: EnvManager, name_behavior_id: str |
|
) -> None: |
|
|
|
parsed_behavior_id = BehaviorIdentifiers.from_name_behavior_id(name_behavior_id) |
|
brain_name = parsed_behavior_id.brain_name |
|
trainerthread = None |
|
if brain_name in self.trainers: |
|
trainer = self.trainers[brain_name] |
|
else: |
|
trainer = self.trainer_factory.generate(brain_name) |
|
self.trainers[brain_name] = trainer |
|
if trainer.threaded: |
|
|
|
trainerthread = threading.Thread( |
|
target=self.trainer_update_func, args=(trainer,), daemon=True |
|
) |
|
self.trainer_threads.append(trainerthread) |
|
env_manager.on_training_started( |
|
brain_name, self.trainer_factory.trainer_config[brain_name] |
|
) |
|
|
|
policy = trainer.create_policy( |
|
parsed_behavior_id, |
|
env_manager.training_behaviors[name_behavior_id], |
|
) |
|
trainer.add_policy(parsed_behavior_id, policy) |
|
|
|
agent_manager = AgentManager( |
|
policy, |
|
name_behavior_id, |
|
trainer.stats_reporter, |
|
trainer.parameters.time_horizon, |
|
threaded=trainer.threaded, |
|
) |
|
env_manager.set_agent_manager(name_behavior_id, agent_manager) |
|
env_manager.set_policy(name_behavior_id, policy) |
|
self.brain_name_to_identifier[brain_name].add(name_behavior_id) |
|
|
|
trainer.publish_policy_queue(agent_manager.policy_queue) |
|
trainer.subscribe_trajectory_queue(agent_manager.trajectory_queue) |
|
|
|
|
|
if trainerthread is not None: |
|
trainerthread.start() |
|
|
|
def _create_trainers_and_managers( |
|
self, env_manager: EnvManager, behavior_ids: Set[str] |
|
) -> None: |
|
for behavior_id in behavior_ids: |
|
self._create_trainer_and_manager(env_manager, behavior_id) |
|
|
|
@timed |
|
def start_learning(self, env_manager: EnvManager) -> None: |
|
self._create_output_path(self.output_path) |
|
try: |
|
|
|
self._reset_env(env_manager) |
|
self.param_manager.log_current_lesson() |
|
while self._not_done_training(): |
|
n_steps = self.advance(env_manager) |
|
for _ in range(n_steps): |
|
self.reset_env_if_ready(env_manager) |
|
|
|
self.join_threads() |
|
except ( |
|
KeyboardInterrupt, |
|
UnityCommunicationException, |
|
UnityEnvironmentException, |
|
UnityCommunicatorStoppedException, |
|
) as ex: |
|
self.join_threads() |
|
self.logger.info( |
|
"Learning was interrupted. Please wait while the graph is generated." |
|
) |
|
if isinstance(ex, KeyboardInterrupt) or isinstance( |
|
ex, UnityCommunicatorStoppedException |
|
): |
|
pass |
|
else: |
|
|
|
|
|
raise ex |
|
finally: |
|
if self.train_model: |
|
self._save_models() |
|
|
|
def end_trainer_episodes(self) -> None: |
|
|
|
|
|
for trainer in self.trainers.values(): |
|
trainer.end_episode() |
|
|
|
def reset_env_if_ready(self, env: EnvManager) -> None: |
|
|
|
reward_buff = {k: list(t.reward_buffer) for (k, t) in self.trainers.items()} |
|
curr_step = {k: int(t.get_step) for (k, t) in self.trainers.items()} |
|
max_step = {k: int(t.get_max_steps) for (k, t) in self.trainers.items()} |
|
|
|
|
|
updated, param_must_reset = self.param_manager.update_lessons( |
|
curr_step, max_step, reward_buff |
|
) |
|
if updated: |
|
for trainer in self.trainers.values(): |
|
trainer.reward_buffer.clear() |
|
|
|
ghost_controller_reset = self.ghost_controller.should_reset() |
|
if param_must_reset or ghost_controller_reset: |
|
self._reset_env(env) |
|
self.end_trainer_episodes() |
|
elif updated: |
|
env.set_env_parameters(self.param_manager.get_current_samplers()) |
|
|
|
@timed |
|
def advance(self, env_manager: EnvManager) -> int: |
|
|
|
with hierarchical_timer("env_step"): |
|
new_step_infos = env_manager.get_steps() |
|
self._register_new_behaviors(env_manager, new_step_infos) |
|
num_steps = env_manager.process_steps(new_step_infos) |
|
|
|
|
|
for ( |
|
param_name, |
|
lesson_number, |
|
) in self.param_manager.get_current_lesson_number().items(): |
|
for trainer in self.trainers.values(): |
|
trainer.stats_reporter.set_stat( |
|
f"Environment/Lesson Number/{param_name}", lesson_number |
|
) |
|
|
|
for trainer in self.trainers.values(): |
|
if not trainer.threaded: |
|
with hierarchical_timer("trainer_advance"): |
|
trainer.advance() |
|
|
|
return num_steps |
|
|
|
def _register_new_behaviors( |
|
self, env_manager: EnvManager, step_infos: List[EnvironmentStep] |
|
) -> None: |
|
""" |
|
Handle registration (adding trainers and managers) of new behaviors ids. |
|
:param env_manager: |
|
:param step_infos: |
|
:return: |
|
""" |
|
step_behavior_ids: Set[str] = set() |
|
for s in step_infos: |
|
step_behavior_ids |= set(s.name_behavior_ids) |
|
new_behavior_ids = step_behavior_ids - self.registered_behavior_ids |
|
self._create_trainers_and_managers(env_manager, new_behavior_ids) |
|
self.registered_behavior_ids |= step_behavior_ids |
|
|
|
def join_threads(self, timeout_seconds: float = 1.0) -> None: |
|
""" |
|
Wait for threads to finish, and merge their timer information into the main thread. |
|
:param timeout_seconds: |
|
:return: |
|
""" |
|
self.kill_trainers = True |
|
for t in self.trainer_threads: |
|
try: |
|
t.join(timeout_seconds) |
|
except Exception: |
|
pass |
|
|
|
with hierarchical_timer("trainer_threads") as main_timer_node: |
|
for trainer_thread in self.trainer_threads: |
|
thread_timer_stack = get_timer_stack_for_thread(trainer_thread) |
|
if thread_timer_stack: |
|
main_timer_node.merge( |
|
thread_timer_stack.root, |
|
root_name="thread_root", |
|
is_parallel=True, |
|
) |
|
merge_gauges(thread_timer_stack.gauges) |
|
|
|
def trainer_update_func(self, trainer: Trainer) -> None: |
|
while not self.kill_trainers: |
|
with hierarchical_timer("trainer_advance"): |
|
trainer.advance() |
|
|