import pytest from mlagents.torch_utils import torch from mlagents.trainers.torch_entities.decoders import ValueHeads def test_valueheads(): stream_names = [f"reward_signal_{num}" for num in range(5)] input_size = 5 batch_size = 4 # Test default 1 value per head value_heads = ValueHeads(stream_names, input_size) input_data = torch.ones((batch_size, input_size)) value_out = value_heads(input_data) # Note: mean value will be removed shortly for stream_name in stream_names: assert value_out[stream_name].shape == (batch_size,) # Test that inputting the wrong size input will throw an error with pytest.raises(Exception): value_out = value_heads(torch.ones((batch_size, input_size + 2))) # Test multiple values per head (e.g. discrete Q function) output_size = 4 value_heads = ValueHeads(stream_names, input_size, output_size) input_data = torch.ones((batch_size, input_size)) value_out = value_heads(input_data) for stream_name in stream_names: assert value_out[stream_name].shape == (batch_size, output_size)