from mlagents.torch_utils import torch from mlagents.trainers.torch_entities.layers import ( Swish, linear_layer, lstm_layer, Initialization, LSTM, LayerNorm, ) def test_swish(): layer = Swish() input_tensor = torch.Tensor([[1, 2, 3], [4, 5, 6]]) target_tensor = torch.mul(input_tensor, torch.sigmoid(input_tensor)) assert torch.all(torch.eq(layer(input_tensor), target_tensor)) def test_initialization_layer(): torch.manual_seed(0) # Test Zero layer = linear_layer( 3, 4, kernel_init=Initialization.Zero, bias_init=Initialization.Zero ) assert torch.all(torch.eq(layer.weight.data, torch.zeros_like(layer.weight.data))) assert torch.all(torch.eq(layer.bias.data, torch.zeros_like(layer.bias.data))) def test_lstm_layer(): torch.manual_seed(0) # Test zero for LSTM layer = lstm_layer( 4, 4, kernel_init=Initialization.Zero, bias_init=Initialization.Zero ) for name, param in layer.named_parameters(): if "weight" in name: assert torch.all(torch.eq(param.data, torch.zeros_like(param.data))) elif "bias" in name: assert torch.all( torch.eq(param.data[4:8], torch.ones_like(param.data[4:8])) ) def test_lstm_class(): torch.manual_seed(0) input_size = 12 memory_size = 64 batch_size = 8 seq_len = 16 lstm = LSTM(input_size, memory_size) assert lstm.memory_size == memory_size sample_input = torch.ones((batch_size, seq_len, input_size)) sample_memories = torch.ones((1, batch_size, memory_size)) out, mem = lstm(sample_input, sample_memories) # Hidden size should be half of memory_size assert out.shape == (batch_size, seq_len, memory_size // 2) assert mem.shape == (1, batch_size, memory_size) def test_layer_norm(): torch.manual_seed(0) torch_ln = torch.nn.LayerNorm(10, elementwise_affine=False) cust_ln = LayerNorm() sample_input = torch.rand(10) assert torch.all( torch.isclose( torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0 ) ) sample_input = torch.rand((4, 10)) assert torch.all( torch.isclose( torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0 ) ) sample_input = torch.rand((7, 6, 10)) assert torch.all( torch.isclose( torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0 ) )