import argparse from mlagents_envs.environment import UnityEnvironment from mlagents_envs.side_channel.engine_configuration_channel import ( EngineConfigurationChannel, ) def test_run_environment(env_name): """ Run the low-level API test using the specified environment :param env_name: Name of the Unity environment binary to launch """ engine_configuration_channel = EngineConfigurationChannel() env = UnityEnvironment( file_name=env_name, side_channels=[engine_configuration_channel], no_graphics=True, additional_args=["-logFile", "-"], ) try: # Reset the environment env.reset() # Set the default brain to work with group_name = list(env.behavior_specs.keys())[0] group_spec = env.behavior_specs[group_name] # Set the time scale of the engine engine_configuration_channel.set_configuration_parameters(time_scale=3.0) # Get the state of the agents decision_steps, terminal_steps = env.get_steps(group_name) # Examine the number of observations per Agent print("Number of observations : ", len(group_spec.observation_specs)) for obs_spec in group_spec.observation_specs: # Make sure the name was set in the ObservationSpec assert bool(obs_spec.name) is True, f'obs_spec.name="{obs_spec.name}"' # Is there a visual observation ? vis_obs = any( len(obs_spec.shape) == 3 for obs_spec in group_spec.observation_specs ) print("Is there a visual observation ?", vis_obs) # Examine the state space for the first observation for the first agent print(f"First Agent observation looks like: \n{decision_steps.obs[0][0]}") for _episode in range(10): env.reset() decision_steps, terminal_steps = env.get_steps(group_name) done = False episode_rewards = 0 tracked_agent = -1 while not done: action_tuple = group_spec.action_spec.random_action(len(decision_steps)) if tracked_agent == -1 and len(decision_steps) >= 1: tracked_agent = decision_steps.agent_id[0] env.set_actions(group_name, action_tuple) env.step() decision_steps, terminal_steps = env.get_steps(group_name) done = False if tracked_agent in decision_steps: episode_rewards += decision_steps[tracked_agent].reward if tracked_agent in terminal_steps: episode_rewards += terminal_steps[tracked_agent].reward done = True print(f"Total reward this episode: {episode_rewards}") finally: env.close() def test_closing(env_name): """ Run the low-level API and close the environment :param env_name: Name of the Unity environment binary to launch """ try: env1 = UnityEnvironment( file_name=env_name, base_port=5006, no_graphics=True, additional_args=["-logFile", "-"], ) env1.close() env1 = UnityEnvironment( file_name=env_name, base_port=5006, no_graphics=True, additional_args=["-logFile", "-"], ) env2 = UnityEnvironment( file_name=env_name, base_port=5007, no_graphics=True, additional_args=["-logFile", "-"], ) env2.reset() finally: env1.close() env2.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--env", default="artifacts/testPlayer") args = parser.parse_args() test_run_environment(args.env) test_closing(args.env)