# Table of Contents * [mlagents\_envs.envs.unity\_gym\_env](#mlagents_envs.envs.unity_gym_env) * [UnityGymException](#mlagents_envs.envs.unity_gym_env.UnityGymException) * [UnityToGymWrapper](#mlagents_envs.envs.unity_gym_env.UnityToGymWrapper) * [\_\_init\_\_](#mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.__init__) * [reset](#mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.reset) * [step](#mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.step) * [render](#mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.render) * [close](#mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.close) * [seed](#mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.seed) * [ActionFlattener](#mlagents_envs.envs.unity_gym_env.ActionFlattener) * [\_\_init\_\_](#mlagents_envs.envs.unity_gym_env.ActionFlattener.__init__) * [lookup\_action](#mlagents_envs.envs.unity_gym_env.ActionFlattener.lookup_action) <a name="mlagents_envs.envs.unity_gym_env"></a> # mlagents\_envs.envs.unity\_gym\_env <a name="mlagents_envs.envs.unity_gym_env.UnityGymException"></a> ## UnityGymException Objects ```python class UnityGymException(error.Error) ``` Any error related to the gym wrapper of ml-agents. <a name="mlagents_envs.envs.unity_gym_env.UnityToGymWrapper"></a> ## UnityToGymWrapper Objects ```python class UnityToGymWrapper(gym.Env) ``` Provides Gym wrapper for Unity Learning Environments. <a name="mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.__init__"></a> #### \_\_init\_\_ ```python | __init__(unity_env: BaseEnv, uint8_visual: bool = False, flatten_branched: bool = False, allow_multiple_obs: bool = False, action_space_seed: Optional[int] = None) ``` Environment initialization **Arguments**: - `unity_env`: The Unity BaseEnv to be wrapped in the gym. Will be closed when the UnityToGymWrapper closes. - `uint8_visual`: Return visual observations as uint8 (0-255) matrices instead of float (0.0-1.0). - `flatten_branched`: If True, turn branched discrete action spaces into a Discrete space rather than MultiDiscrete. - `allow_multiple_obs`: If True, return a list of np.ndarrays as observations with the first elements containing the visual observations and the last element containing the array of vector observations. If False, returns a single np.ndarray containing either only a single visual observation or the array of vector observations. - `action_space_seed`: If non-None, will be used to set the random seed on created gym.Space instances. <a name="mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.reset"></a> #### reset ```python | reset() -> Union[List[np.ndarray], np.ndarray] ``` Resets the state of the environment and returns an initial observation. Returns: observation (object/list): the initial observation of the space. <a name="mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.step"></a> #### step ```python | step(action: List[Any]) -> GymStepResult ``` Run one timestep of the environment's dynamics. When end of episode is reached, you are responsible for calling `reset()` to reset this environment's state. Accepts an action and returns a tuple (observation, reward, done, info). **Arguments**: - `action` _object/list_ - an action provided by the environment **Returns**: - `observation` _object/list_ - agent's observation of the current environment reward (float/list) : amount of reward returned after previous action - `done` _boolean/list_ - whether the episode has ended. - `info` _dict_ - contains auxiliary diagnostic information. <a name="mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.render"></a> #### render ```python | render(mode="rgb_array") ``` Return the latest visual observations. Note that it will not render a new frame of the environment. <a name="mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.close"></a> #### close ```python | close() -> None ``` Override _close in your subclass to perform any necessary cleanup. Environments will automatically close() themselves when garbage collected or when the program exits. <a name="mlagents_envs.envs.unity_gym_env.UnityToGymWrapper.seed"></a> #### seed ```python | seed(seed: Any = None) -> None ``` Sets the seed for this env's random number generator(s). Currently not implemented. <a name="mlagents_envs.envs.unity_gym_env.ActionFlattener"></a> ## ActionFlattener Objects ```python class ActionFlattener() ``` Flattens branched discrete action spaces into single-branch discrete action spaces. <a name="mlagents_envs.envs.unity_gym_env.ActionFlattener.__init__"></a> #### \_\_init\_\_ ```python | __init__(branched_action_space) ``` Initialize the flattener. **Arguments**: - `branched_action_space`: A List containing the sizes of each branch of the action space, e.g. [2,3,3] for three branches with size 2, 3, and 3 respectively. <a name="mlagents_envs.envs.unity_gym_env.ActionFlattener.lookup_action"></a> #### lookup\_action ```python | lookup_action(action) ``` Convert a scalar discrete action into a unique set of branched actions. **Arguments**: - `action`: A scalar value representing one of the discrete actions. **Returns**: The List containing the branched actions.