from unittest.mock import MagicMock, patch import pytest from mlagents.torch_utils import torch from mlagents.trainers.trainer_controller import TrainerController from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager from mlagents.trainers.ghost.controller import GhostController @pytest.fixture def basic_trainer_controller(): trainer_factory_mock = MagicMock() trainer_factory_mock.ghost_controller = GhostController() return TrainerController( trainer_factory=trainer_factory_mock, output_path="test_model_path", run_id="test_run_id", param_manager=EnvironmentParameterManager(), train=True, training_seed=99, ) @patch("numpy.random.seed") @patch.object(torch, "manual_seed") def test_initialization_seed(numpy_random_seed, torch_set_seed): seed = 27 trainer_factory_mock = MagicMock() trainer_factory_mock.ghost_controller = GhostController() TrainerController( trainer_factory=trainer_factory_mock, output_path="", run_id="1", param_manager=None, train=True, training_seed=seed, ) numpy_random_seed.assert_called_with(seed) torch_set_seed.assert_called_with(seed) @pytest.fixture def trainer_controller_with_start_learning_mocks(basic_trainer_controller): trainer_mock = MagicMock() trainer_mock.get_step = 0 trainer_mock.get_max_steps = 5 trainer_mock.should_still_train = True trainer_mock.parameters = {"some": "parameter"} trainer_mock.write_tensorboard_text = MagicMock() tc = basic_trainer_controller tc.trainers = {"testbrain": trainer_mock} tc.advance = MagicMock() tc.trainers["testbrain"].get_step = 0 def take_step_sideeffect(env): tc.trainers["testbrain"].get_step += 1 if ( not tc.trainers["testbrain"].get_step <= tc.trainers["testbrain"].get_max_steps ): tc.trainers["testbrain"].should_still_train = False if tc.trainers["testbrain"].get_step > 10: raise KeyboardInterrupt return 1 tc.advance.side_effect = take_step_sideeffect tc._save_models = MagicMock() return tc, trainer_mock def test_start_learning_trains_forever_if_no_train_model( trainer_controller_with_start_learning_mocks, ): tc, trainer_mock = trainer_controller_with_start_learning_mocks tc.train_model = False env_mock = MagicMock() env_mock.close = MagicMock() env_mock.reset = MagicMock() env_mock.training_behaviors = MagicMock() tc.start_learning(env_mock) env_mock.reset.assert_called_once() assert tc.advance.call_count == 11 tc._save_models.assert_not_called() def test_start_learning_trains_until_max_steps_then_saves( trainer_controller_with_start_learning_mocks, ): tc, trainer_mock = trainer_controller_with_start_learning_mocks brain_info_mock = MagicMock() env_mock = MagicMock() env_mock.close = MagicMock() env_mock.reset = MagicMock(return_value=brain_info_mock) env_mock.training_behaviors = MagicMock() tc.start_learning(env_mock) env_mock.reset.assert_called_once() assert tc.advance.call_count == trainer_mock.get_max_steps + 1 tc._save_models.assert_called_once() @pytest.fixture def trainer_controller_with_take_step_mocks(basic_trainer_controller): trainer_mock = MagicMock() trainer_mock.get_step = 0 trainer_mock.get_max_steps = 5 trainer_mock.parameters = {"some": "parameter"} trainer_mock.write_tensorboard_text = MagicMock() tc = basic_trainer_controller tc.trainers = {"testbrain": trainer_mock} tc.managers = {"testbrain": MagicMock()} return tc, trainer_mock def test_advance_adds_experiences_to_trainer_and_trains( trainer_controller_with_take_step_mocks, ): tc, trainer_mock = trainer_controller_with_take_step_mocks brain_name = "testbrain" env_mock = MagicMock() tc.brain_name_to_identifier[brain_name].add(brain_name) tc.advance(env_mock) env_mock.reset.assert_not_called() env_mock.get_steps.assert_called_once() env_mock.process_steps.assert_called_once() # May have been called many times due to thread # assert trainer_mock.advance.call_count > 0