--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: populism_model103 results: [] --- # populism_model103 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4117 - Accuracy: 0.9346 - F1: 0.3902 - Recall: 0.5714 - Precision: 0.2963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | No log | 1.0 | 12 | 0.3301 | 0.8377 | 0.2955 | 0.9286 | 0.1757 | | No log | 2.0 | 24 | 0.2935 | 0.8717 | 0.3467 | 0.9286 | 0.2131 | | No log | 3.0 | 36 | 0.3193 | 0.9110 | 0.3704 | 0.7143 | 0.25 | | No log | 4.0 | 48 | 0.3602 | 0.9136 | 0.3265 | 0.5714 | 0.2286 | | 0.318 | 5.0 | 60 | 0.4117 | 0.9346 | 0.3902 | 0.5714 | 0.2963 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0