--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_model109 results: [] --- # populism_model109 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3827 - Accuracy: 0.9004 - 1-f1: 0.2535 - 1-recall: 0.4737 - 1-precision: 0.1731 - Balanced Acc: 0.6949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | No log | 1.0 | 17 | 0.4790 | 0.8195 | 0.1864 | 0.5789 | 0.1111 | 0.7037 | | 0.5167 | 2.0 | 34 | 0.4572 | 0.8026 | 0.1732 | 0.5789 | 0.1019 | 0.6949 | | 0.3953 | 3.0 | 51 | 0.4053 | 0.9154 | 0.2623 | 0.4211 | 0.1905 | 0.6774 | | 0.3953 | 4.0 | 68 | 0.3964 | 0.8872 | 0.25 | 0.5263 | 0.1639 | 0.7135 | | 0.3107 | 5.0 | 85 | 0.3827 | 0.9004 | 0.2535 | 0.4737 | 0.1731 | 0.6949 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0