--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_model110 results: [] --- # populism_model110 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4183 - Accuracy: 0.8586 - 1-f1: 0.2887 - 1-recall: 0.6087 - 1-precision: 0.1892 - Balanced Acc: 0.7398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | No log | 1.0 | 16 | 0.5475 | 0.6537 | 0.1914 | 0.8696 | 0.1075 | 0.7563 | | 0.5254 | 2.0 | 32 | 0.4896 | 0.7131 | 0.2308 | 0.9130 | 0.1321 | 0.8081 | | 0.5254 | 3.0 | 48 | 0.4099 | 0.8607 | 0.2609 | 0.5217 | 0.1739 | 0.6996 | | 0.4424 | 4.0 | 64 | 0.4653 | 0.9016 | 0.25 | 0.3478 | 0.1951 | 0.6384 | | 0.3305 | 5.0 | 80 | 0.4183 | 0.8586 | 0.2887 | 0.6087 | 0.1892 | 0.7398 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0