--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_model111 results: [] --- # populism_model111 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6324 - Accuracy: 0.9331 - 1-f1: 0.3077 - 1-recall: 0.3810 - 1-precision: 0.2581 - Balanced Acc: 0.6682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | No log | 1.0 | 17 | 0.4979 | 0.9554 | 0.0769 | 0.0476 | 0.2 | 0.5199 | | 0.4627 | 2.0 | 34 | 0.4936 | 0.9424 | 0.3404 | 0.3810 | 0.3077 | 0.6731 | | 0.2898 | 3.0 | 51 | 0.5184 | 0.9015 | 0.2535 | 0.4286 | 0.18 | 0.6746 | | 0.2898 | 4.0 | 68 | 0.5747 | 0.9145 | 0.2581 | 0.3810 | 0.1951 | 0.6586 | | 0.2036 | 5.0 | 85 | 0.6324 | 0.9331 | 0.3077 | 0.3810 | 0.2581 | 0.6682 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0