--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_model116 results: [] --- # populism_model116 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3078 - Accuracy: 0.9443 - 1-f1: 0.3373 - 1-recall: 0.5 - 1-precision: 0.2545 - Balanced Acc: 0.7286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3847 | 1.0 | 62 | 0.4022 | 0.9686 | 0.1143 | 0.0714 | 0.2857 | 0.5331 | | 0.525 | 2.0 | 124 | 0.3436 | 0.8664 | 0.25 | 0.7857 | 0.1486 | 0.8272 | | 0.3211 | 3.0 | 186 | 0.3078 | 0.9443 | 0.3373 | 0.5 | 0.2545 | 0.7286 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0