File size: 2,099 Bytes
9da5abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: mit
base_model: AnonymousCS/populism_multilingual_roberta_base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: populism_model70
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# populism_model70
This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4714
- Accuracy: 0.8687
- F1: 0.5938
- Recall: 0.7037
- Precision: 0.5135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| No log | 1.0 | 7 | 0.3759 | 0.7626 | 0.5155 | 0.9259 | 0.3571 |
| No log | 2.0 | 14 | 0.6082 | 0.8838 | 0.6102 | 0.6667 | 0.5625 |
| No log | 3.0 | 21 | 0.3812 | 0.8434 | 0.6076 | 0.8889 | 0.4615 |
| No log | 4.0 | 28 | 0.3627 | 0.8182 | 0.5714 | 0.8889 | 0.4211 |
| No log | 5.0 | 35 | 0.4714 | 0.8687 | 0.5938 | 0.7037 | 0.5135 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|