--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: populism_model90 results: [] --- # populism_model90 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7308 - Accuracy: 0.9179 - F1: 0.4335 - Recall: 0.5116 - Precision: 0.3761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.3922 | 1.0 | 88 | 0.3904 | 0.8769 | 0.4062 | 0.6860 | 0.2885 | | 0.2731 | 2.0 | 176 | 0.7119 | 0.9347 | 0.3960 | 0.3488 | 0.4580 | | 0.2129 | 3.0 | 264 | 0.4806 | 0.9040 | 0.4035 | 0.5291 | 0.3262 | | 0.1491 | 4.0 | 352 | 0.6170 | 0.9162 | 0.4226 | 0.5 | 0.3660 | | 0.1097 | 5.0 | 440 | 0.7308 | 0.9179 | 0.4335 | 0.5116 | 0.3761 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0