--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_model93 results: [] --- # populism_model93 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7659 - Accuracy: 0.9244 - 1-f1: 0.3592 - 1-recall: 0.4353 - 1-precision: 0.3058 - Balanced Acc: 0.6923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3779 | 1.0 | 110 | 0.4729 | 0.9020 | 0.3187 | 0.4706 | 0.2410 | 0.6973 | | 0.3089 | 2.0 | 220 | 0.5169 | 0.9077 | 0.3264 | 0.4588 | 0.2532 | 0.6948 | | 0.2595 | 3.0 | 330 | 0.4947 | 0.8842 | 0.2986 | 0.5059 | 0.2118 | 0.7047 | | 0.1767 | 4.0 | 440 | 0.7978 | 0.9415 | 0.3544 | 0.3294 | 0.3836 | 0.6512 | | 0.0985 | 5.0 | 550 | 0.7659 | 0.9244 | 0.3592 | 0.4353 | 0.3058 | 0.6923 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0