""" Sample from a trained model """ import os import pickle from contextlib import nullcontext import torch import tiktoken from modeling_gpt import GPTConfig, GPT from modeling_rwkv import RWKV,RWKVConfig # ----------------------------------------------------------------------------- init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl') out_dir = 'out' # ignored if init_from is not 'resume' start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt" num_samples = 10 # number of samples to draw max_new_tokens = 500 # number of tokens generated in each sample temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability seed = 1337 device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. dtype = 'bfloat16' if torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16' compile = False # use PyTorch 2.0 to compile the model to be faster exec(open('configurator.py').read()) # overrides from command line or config file # ----------------------------------------------------------------------------- torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) # model if init_from == 'resume': # init from a model saved in a specific directory ckpt_path = os.path.join(out_dir, 'ckpt.pt') checkpoint = torch.load(ckpt_path, map_location=device) gptconf = GPTConfig(**checkpoint['model_args']) model = GPT(gptconf) state_dict = checkpoint['model'] unwanted_prefix = '_orig_mod.' for k,v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) model.load_state_dict(state_dict) elif init_from.startswith('gpt2'): # init from a given GPT-2 model model = GPT.from_pretrained(init_from, dict(dropout=0.0)) elif init_from.startswith("RWKV"): model = RWKV.from_pretrained(init_from,use_customized_cuda_kernel=False,dtype=dtype) model.scale_parameters() model.eval() model.to(device) if compile: model = torch.compile(model) # requires PyTorch 2.0 (optional) # look for the meta pickle in case it is available in the dataset folder load_meta = False if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these... meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl') load_meta = os.path.exists(meta_path) if load_meta: print(f"Loading meta from {meta_path}...") with open(meta_path, 'rb') as f: meta = pickle.load(f) # TODO want to make this more general to arbitrary encoder/decoder schemes stoi, itos = meta['stoi'], meta['itos'] encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) elif init_from.startswith("gpt2"): # ok let's assume gpt-2 encodings by default print("No meta.pkl found, assuming GPT-2 encodings...") enc = tiktoken.get_encoding("gpt2") encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"}) decode = lambda l: enc.decode(l) elif init_from.startswith("RWKV"): print("No meta.pkl found, assuming RWKV encodings...") from transformers import AutoTokenizer os.environ["TOKENIZERS_PARALLELISM"] = "false" toker = AutoTokenizer.from_pretrained(init_from) encode = lambda s:toker.encode(s) decode = lambda s:toker.decode(s) # encode the beginning of the prompt if start.startswith('FILE:'): with open(start[5:], 'r', encoding='utf-8') as f: start = f.read() start_ids = encode(start) x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) # x = torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...].repeat(12,1) # run generation with torch.no_grad(): with ctx: for k in range(num_samples): y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) print(decode(y[0].tolist())) print('---------------')