AntoineBlanot commited on
Commit
11589e4
1 Parent(s): 47ceb17

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - multi_nli
4
+ - snli
5
+ - scitail
6
+ language:
7
+ - en
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ pipeline_tag: zero-shot-classification
12
+ ---
13
+ # RoBERTa NLI (Natural Language Inference)
14
+ This model is a fine-tuned model of [roberta-large](https://huggingface.co/roberta-large) after being trained on a **mixture of NLI datasets**.
15
+
16
+ This model can classify a pair of sentence (a <u>premise</u> and a <u>claim</u>) into 3 classes:
17
+ - 'entailment': the claim can logically be inferred from the premise
18
+ - 'contradiction': the claim contradicts the premise
19
+ - 'neutral': the premise is unrelated or do not provide sufficient information to validate the claim
20
+
21
+ This model can also be used for **zero-shot classification tasks** !
22
+ Please take a look at this [repo](https://github.com/AntoineBlanot/zero-nlp) for more information on zero-shot classification tasks.
23
+
24
+ # Usage
25
+ This model has been trained in an efficient way and thus cannot be load directly from HuggingFace's hub. To use that model, please follow instructions on this [repo](https://github.com/AntoineBlanot/efficient-llm).
26
+
27
+ For **zero-shot classification** tasks, please take a look at this [repo](https://github.com/AntoineBlanot/zero-nlp).
28
+
29
+ # Data used for training
30
+ - multi_nli
31
+ - snli
32
+ - scitail
33
+
34
+ # Evaluation results
35
+
36
+ | Data | Accuracy |
37
+ |:---:|:---------:|
38
+ | MNLI (val. m) | 0.894 |
39
+ | MNLI (val. mm) | 0.895 |
40
+ | SNLI (val.) | 0.920 |
41
+ | SciTail (val.) | 0.934 |