Antony M. Gitau commited on
Commit
6de970a
1 Parent(s): 0db7076

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_11_0
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: fine-tune-wav2vec2-large-xls-r-1b-sw
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice_11_0
17
+ type: common_voice_11_0
18
+ config: sw
19
+ split: test[:1%]
20
+ args: sw
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.5834348355663824
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # fine-tune-wav2vec2-large-xls-r-1b-sw
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.2834
35
+ - Wer: 0.5834
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0003
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - num_epochs: 9
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
70
+ | No log | 1.72 | 200 | 3.0092 | 1.0 |
71
+ | 4.1305 | 3.43 | 400 | 2.9159 | 1.0 |
72
+ | 4.1305 | 5.15 | 600 | 1.4301 | 0.7040 |
73
+ | 0.9217 | 6.87 | 800 | 1.3143 | 0.6529 |
74
+ | 0.9217 | 8.58 | 1000 | 1.2834 | 0.5834 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.27.0
80
+ - Pytorch 1.13.1+cu116
81
+ - Datasets 2.10.1
82
+ - Tokenizers 0.13.2