--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: fine-tune-wav2vec2-large-xls-r-1b-sw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: sw split: test[:1%] args: sw metrics: - name: Wer type: wer value: 0.5834348355663824 --- # fine-tune-wav2vec2-large-xls-r-300m-sw This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 swahili dataset. It achieves the following results on the evaluation set: - Loss: 1.2834 - Wer: 0.5834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 9 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.72 | 200 | 3.0092 | 1.0 | | 4.1305 | 3.43 | 400 | 2.9159 | 1.0 | | 4.1305 | 5.15 | 600 | 1.4301 | 0.7040 | | 0.9217 | 6.87 | 800 | 1.3143 | 0.6529 | | 0.9217 | 8.58 | 1000 | 1.2834 | 0.5834 | ### Framework versions - Transformers 4.27.0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2