File size: 2,228 Bytes
598dcb1
68236db
 
 
 
 
 
 
 
 
598dcb1
 
68236db
 
598dcb1
68236db
598dcb1
68236db
 
 
 
 
598dcb1
68236db
598dcb1
68236db
598dcb1
68236db
598dcb1
68236db
598dcb1
68236db
598dcb1
68236db
598dcb1
68236db
598dcb1
68236db
598dcb1
68236db
 
 
 
 
 
 
 
 
 
 
 
598dcb1
68236db
598dcb1
68236db
 
 
 
 
 
 
 
 
 
 
 
598dcb1
 
68236db
598dcb1
68236db
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-Tamil-large-xlsr53
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-Tamil-large-xlsr53

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2781
- Wer: 0.3110
- Cer: 0.0517

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 5.904         | 2.2472  | 300  | 3.1297          | 1.0    | 0.9873 |
| 0.9535        | 4.4944  | 600  | 0.3668          | 0.5619 | 0.1031 |
| 0.2594        | 6.7416  | 900  | 0.2991          | 0.4758 | 0.0811 |
| 0.1648        | 8.9888  | 1200 | 0.2692          | 0.4060 | 0.0670 |
| 0.1146        | 11.2360 | 1500 | 0.2712          | 0.3747 | 0.0617 |
| 0.0904        | 13.4831 | 1800 | 0.2722          | 0.3488 | 0.0577 |
| 0.0734        | 15.7303 | 2100 | 0.2682          | 0.3317 | 0.0568 |
| 0.0597        | 17.9775 | 2400 | 0.2778          | 0.3263 | 0.0548 |
| 0.0553        | 20.2247 | 2700 | 0.2740          | 0.3153 | 0.0526 |
| 0.0466        | 22.4719 | 3000 | 0.2781          | 0.3110 | 0.0517 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 1.18.3
- Tokenizers 0.19.1