--- base_model: Anwaarma/Improved-xlm-attempt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: robust-xlm2 results: [] --- # robust-xlm2 This model is a fine-tuned version of [Anwaarma/Improved-xlm-attempt2](https://huggingface.co/Anwaarma/Improved-xlm-attempt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2054 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.0546 | 50 | 0.2327 | 0.9 | | No log | 0.1092 | 100 | 0.2348 | 0.92 | | No log | 0.1638 | 150 | 0.3075 | 0.9 | | No log | 0.2183 | 200 | 0.2929 | 0.9 | | No log | 0.2729 | 250 | 0.3723 | 0.89 | | No log | 0.3275 | 300 | 0.2431 | 0.9 | | No log | 0.3821 | 350 | 0.2377 | 0.91 | | No log | 0.4367 | 400 | 0.2088 | 0.91 | | No log | 0.4913 | 450 | 0.3995 | 0.89 | | 0.2747 | 0.5459 | 500 | 0.2175 | 0.91 | | 0.2747 | 0.6004 | 550 | 0.2226 | 0.93 | | 0.2747 | 0.6550 | 600 | 0.2073 | 0.9 | | 0.2747 | 0.7096 | 650 | 0.2741 | 0.9 | | 0.2747 | 0.7642 | 700 | 0.2444 | 0.9 | | 0.2747 | 0.8188 | 750 | 0.3467 | 0.9 | | 0.2747 | 0.8734 | 800 | 0.2255 | 0.92 | | 0.2747 | 0.9279 | 850 | 0.2496 | 0.9 | | 0.2747 | 0.9825 | 900 | 0.3061 | 0.91 | | 0.2747 | 1.0371 | 950 | 0.2751 | 0.92 | | 0.2371 | 1.0917 | 1000 | 0.2757 | 0.93 | | 0.2371 | 1.1463 | 1050 | 0.2745 | 0.9 | | 0.2371 | 1.2009 | 1100 | 0.2469 | 0.94 | | 0.2371 | 1.2555 | 1150 | 0.2018 | 0.92 | | 0.2371 | 1.3100 | 1200 | 0.2179 | 0.94 | | 0.2371 | 1.3646 | 1250 | 0.3163 | 0.92 | | 0.2371 | 1.4192 | 1300 | 0.2712 | 0.92 | | 0.2371 | 1.4738 | 1350 | 0.1603 | 0.95 | | 0.2371 | 1.5284 | 1400 | 0.2201 | 0.94 | | 0.2371 | 1.5830 | 1450 | 0.1814 | 0.95 | | 0.1934 | 1.6376 | 1500 | 0.3111 | 0.91 | | 0.1934 | 1.6921 | 1550 | 0.2185 | 0.95 | | 0.1934 | 1.7467 | 1600 | 0.3108 | 0.93 | | 0.1934 | 1.8013 | 1650 | 0.1857 | 0.92 | | 0.1934 | 1.8559 | 1700 | 0.1940 | 0.93 | | 0.1934 | 1.9105 | 1750 | 0.2189 | 0.93 | | 0.1934 | 1.9651 | 1800 | 0.2018 | 0.94 | | 0.1934 | 2.0197 | 1850 | 0.1617 | 0.94 | | 0.1934 | 2.0742 | 1900 | 0.2025 | 0.94 | | 0.1934 | 2.1288 | 1950 | 0.2668 | 0.93 | | 0.1773 | 2.1834 | 2000 | 0.2049 | 0.94 | | 0.1773 | 2.2380 | 2050 | 0.2101 | 0.96 | | 0.1773 | 2.2926 | 2100 | 0.2709 | 0.92 | | 0.1773 | 2.3472 | 2150 | 0.2168 | 0.92 | | 0.1773 | 2.4017 | 2200 | 0.3266 | 0.91 | | 0.1773 | 2.4563 | 2250 | 0.3344 | 0.92 | | 0.1773 | 2.5109 | 2300 | 0.2054 | 0.94 | ### Framework versions - Transformers 4.42.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1