--- datasets: - AnyaSchen/image2poetry_ru language: - ru tags: - Tyutchev - image2poetry --- This repo contains model for generation poetry in style of Tyutchev from image. The model is fune-tuned concatecation of two pre-trained models: [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) as encoder and [AnyaSchen/rugpt3_tyutchev](https://huggingface.co/AnyaSchen/rugpt3_tyutchev) as decoder. To use this model you can do: ``` from PIL import Image import requests from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTImageProcessor def generate_poetry(fine_tuned_model, image, tokenizer): pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) # Generate the poetry with the fine-tuned VisionEncoderDecoder model generated_tokens = fine_tuned_model.generate( pixel_values, max_length=300, num_beams=3, top_p=0.8, temperature=2.0, do_sample=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) # Decode the generated tokens generated_poetry = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) return generated_poetry path = 'AnyaSchen/vit-rugpt3-medium-tyutchev' fine_tuned_model = VisionEncoderDecoderModel.from_pretrained(path).to(device) feature_extractor = ViTImageProcessor.from_pretrained(path) tokenizer = AutoTokenizer.from_pretrained(path) url = 'https://anandaindia.org/wp-content/uploads/2018/12/happy-man.jpg' image = Image.open(requests.get(url, stream=True).raw) generated_poetry = generate_poetry(fine_tuned_model, image, tokenizer) print(generated_poetry) ```