Transformers
English
Inference Endpoints
Apel-sin commited on
Commit
c03bfbd
·
1 Parent(s): 5e87acb

add measurement.json

Browse files
Files changed (2) hide show
  1. README.md +68 -0
  2. measurement.json +0 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ datasets:
4
+ - BAAI/TACO
5
+ - tasksource/PRM800K
6
+ language:
7
+ - en
8
+ base_model: NovaSky-AI/Sky-T1-32B-Flash
9
+ license: apache-2.0
10
+ ---
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is a 32B reasoning model preference optimized on top of Sky-T1-32B-Preview to significantly reduce generation lengths while maintaining accuracy. The performance is on par with o1-preview model in both math and coding, while reducing generation lengths by up to 57% relative to Sky-T1-32B-Preview.
19
+ Please see our [blog post](https://novasky-ai.github.io/posts/reduce-overthinking/) for more details.
20
+
21
+ - **Developed by:** NovaSky Team from Sky Computing Lab at UC Berkeley.
22
+
23
+ ## Training Details
24
+
25
+ ### Training Data
26
+
27
+ 10K preference pairs in math and coding domains, generated by Sky-T1-32B-Preview.
28
+
29
+ ### Training Procedure
30
+ We perform Simple Policy Optimization (SimPO) with a batch size of 96, learning rate of 5e-7, gamma of 0.3, and beta of 2.0.
31
+
32
+ #### Speeds
33
+
34
+ We use Llama-Factory for training. On 8xH100, the SimPO training takes ~2.5 hours with DeepSpeed Zero-3 Offload.
35
+
36
+
37
+ ## Evaluation
38
+ | | | Sky-T1-32B-Preview | Sky-T1-32B-Flash | Qwen2.5-32B-Instruct | QwQ-32B- Base | DeepSeek-R1-Distill-Qwen-32B |
39
+ |--------------|---------|:------------------:|:----------------:|:--------------------:|:-------------:|:----------------------------:|
40
+ | Math500 | Acc | 88.6 | 88.6 | 76.2 | 89.2 | 90.8 |
41
+ | | Avg Len | 2124 | 1417 (-33%) | 522 | 2089 | 2010 |
42
+ | AIME24 | Acc | 43.3 | 43.3 | 16.7 | 50 | 66.7 |
43
+ | | Avg Len | 6881 | 4365 (-37%) | 970 | 7379 | 9173 |
44
+ | LCB Easy | Acc | 87.4 | 89 | 84.6 | 90.7 | 91.2 |
45
+ | | Avg Len | 3415 | 2265 (-34%) | 414 | 3255 | 2775 |
46
+ | LCB Medium | Acc | 56.8 | 56.3 | 40.8 | 56.3 | 76.7 |
47
+ | | Avg Len | 8263 | 4389 (-47%) | 535 | 6742 | 6324 |
48
+ | LCB Hard | Acc | 17.9 | 17.9 | 9.8 | 17.1 | 38.2 |
49
+ | | Avg Len | 14564 | 6199 (-57%) | 618 | 10450 | 10448 |
50
+ | MMLU | Acc | 82.4 | 81.7 | 80.1 | 85.2 | 82.1 |
51
+ | | Avg Len | 1087 | 799 (-17%) | 312 | 1041 | 774 |
52
+ | GPQA Diamond | Acc | 56.8 | 56.6 | 45.5 | 52.5 | 62.6 |
53
+ | | Avg Len | 3503 | 2148 (-39%) | 600 | 3302 | 5108 |
54
+
55
+ ## Acknowledgement
56
+ We would like to thanks the compute resources from [Lambda Lab](https://lambdalabs.com/service/gpu-cloud?srsltid=AfmBOop5FnmEFTkavVtdZDsLWvHWNg6peXtat-OXJ9MW5GMNsk756PE5) and [AnyScale](https://www.anyscale.com/).
57
+
58
+ ## Citation
59
+ Please considering citing our blog post if you found it useful for your research. Thank you!
60
+
61
+ ```bibtex
62
+ @misc{reduce_overthinking_2025,
63
+ author = {NovaSky Team},
64
+ title = {Think Less, Achieve More: Cut Reasoning Costs by 50% Without Sacrificing Accuracy},
65
+ howpublished = {https://novasky-ai.github.io/posts/reduce-overthinking},
66
+ note = {Accessed: 2025-01-23},
67
+ year = {2025}
68
+ }
measurement.json ADDED
The diff for this file is too large to render. See raw diff