File size: 1,761 Bytes
674b739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-uncased-finetuned-ner-kmeans
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-ner-kmeans
This model is a fine-tuned version of [ArBert/bert-base-uncased-finetuned-ner](https://huggingface.co/ArBert/bert-base-uncased-finetuned-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1169
- Precision: 0.9084
- Recall: 0.9245
- F1: 0.9164
- Accuracy: 0.9792
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.036 | 1.0 | 1123 | 0.1010 | 0.9086 | 0.9117 | 0.9101 | 0.9779 |
| 0.0214 | 2.0 | 2246 | 0.1094 | 0.9033 | 0.9199 | 0.9115 | 0.9784 |
| 0.014 | 3.0 | 3369 | 0.1169 | 0.9084 | 0.9245 | 0.9164 | 0.9792 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|