Aratako commited on
Commit
cfc348f
β€’
1 Parent(s): 177a06b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -179
README.md CHANGED
@@ -1,198 +1,81 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
 
 
 
 
 
 
 
3
  ---
4
 
5
- # Model Card for Model ID
6
-
7
- <!-- Provide a quick summary of what the model is/does. -->
8
 
 
9
 
 
10
 
11
  ## Model Details
12
 
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
-
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
 
102
  ## Evaluation
103
 
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
-
170
- ## Citation [optional]
171
-
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
-
174
- **BibTeX:**
175
-
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
 
186
- [More Information Needed]
187
 
188
- ## More Information [optional]
 
 
 
 
 
 
 
 
189
 
190
- [More Information Needed]
191
 
192
- ## Model Card Authors [optional]
 
 
 
 
 
193
 
194
- [More Information Needed]
195
 
196
- ## Model Card Contact
 
 
 
 
 
197
 
198
- [More Information Needed]
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ tags:
4
+ - moe
5
+ - merge
6
+ - mergekit
7
+ base_model:
8
+ - mlabonne/AlphaMonarch-7B
9
+ - beowolx/CodeNinja-1.0-OpenChat-7B
10
+ - SanjiWatsuki/Kunoichi-DPO-v2-7B
11
+ - mlabonne/NeuralDaredevil-7B
12
  ---
13
 
14
+ # Beyonder-4x7B-v3-random-lora
 
 
15
 
16
+ The idea was very simple. If heuristic methods for determining gate parameters in mergeiit-based MoE models can work well, then perhaps we could obtain a better performing model by fine-tuning only the gate parameters.
17
 
18
+ This model is an attempt at testing that idea. Unfortunately, the performance degraded slightly, but I am sharing it as an experimental result.
19
 
20
  ## Model Details
21
 
22
+ First, I created an MoE model using mergekit with gate_mode=random and the following four models:
23
+ - [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
24
+ - [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
25
+ - [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
26
+ - [mlabonne/NeuralDaredevil-7](https://huggingface.co/mlabonne/NeuralDaredevil-7B)
27
+
28
+ Then, I used LoRA to fine-tune only the gate parameters by specifying "gate" in target_modules.
29
+ The data used for fine-tuning is as follows. I used the Mistral prompt format.
30
+ - 5000 random samples from [llm-jp/oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)
31
+ - 5000 random samples from [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
32
+ - 5000 random samples from [hieunguyenminh/roleplay](https://huggingface.co/datasets/hieunguyenminh/roleplay)
33
+ - 5000 random samples from [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
34
+ - 5000 random samples from [m-a-p/CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction)
35
+
36
+ The training was conducted on runpod using 4xA6000 GPUs. The main training parameters are as follows:
37
+ - lora_r: 128
38
+ - lora_alpha: 256
39
+ - lora_dropout: 0.05
40
+ - lora_target_modules: "gate"
41
+ - learning_rate: 3e-4
42
+ - num_train_epochs: 5
43
+ - batch_size: 64
44
+ - max_seq_length: 2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  ## Evaluation
47
 
48
+ The evaluation results show a slight degradation in performance.
49
+ Apart from the possibility that this approach may not be effective, other potential causes could be issues with the dataset, training parameters, training setup (such as prompt formatting), and so on.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ ### Nous ([LLM AutoEval](https://github.com/mlabonne/llm-autoeval))
52
 
53
+ | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
54
+ |---|---:|---:|---:|---:|---:|
55
+ | [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [πŸ“„](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 |
56
+ | [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) [πŸ“„](https://gist.github.com/mlabonne/3740020807e559f7057c32e85ce42d92) | 61.91 | 45.85 | 76.67 | 74.98 | 50.12 |
57
+ | [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) [πŸ“„](https://gist.github.com/Aratako/f86144312989d69f92c64ea4f25a8bb6) | **60.29** | **45.82** | **76.69** | **69.94** | **48.72** |
58
+ | [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [πŸ“„](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
59
+ | [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) [πŸ“„](https://gist.github.com/mlabonne/895ff5171e998abfdf2a41a4f9c84450) | 58.29 | 44.79 | 75.05 | 65.68 | 47.65 |
60
+ | [mlabonne/Beyonder-4x7B-v2](https://huggingface.co/mlabonne/Beyonder-4x7B-v2) [πŸ“„](https://gist.github.com/mlabonne/f73baa140a510a676242f8a4496d05ca) | 57.13 | 45.29 | 75.95 | 60.86 | 46.4 |
61
+ | [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) [πŸ“„](https://gist.github.com/mlabonne/08b5280c221fbd7f98eb27561ae902a3) | 50.35 | 39.98 | 71.77 | 48.73 | 40.92 |
62
 
63
+ ### [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)
64
 
65
+ **1-turn**
66
+ |Model|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score|
67
+ |---|---|---|---|---|---|---|---|---|---|
68
+ | [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) | 6.7 | 8.3 | 9.7 | 6.7 | 6.3 | 9.3 | 9.7 | 10.0 | 8.33750 |
69
+ | [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) | **6.6** | **8.2** | **9.6** | **6.3** | **6.4** | **8.7** | **9.4** | **9.5** | **8.08750** |
70
+ | [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 5.3 | 8.5 | 9.9 | 6.8 | 6.0 | 9.1 | 9.55 | 8.9 | 8.00625 |
71
 
72
+ ![mt-bench-1turn](./mt-bench-1turn.png)
73
 
74
+ **2-turn**
75
+ |Model|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score|
76
+ |---|---|---|---|---|---|---|---|---|---|
77
+ | [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) | 5.4 | 7.6 | 10.0 | 3.5 | 5.5 | 9.0 | 9.6 | 9.1 | 7.46250 |
78
+ | [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) | **5.1** | **8.1** | **9.9** | **4.1** | **3.7** | **8.55** | **9.0** | **7.7** | **7.01875** |
79
+ | [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 4.1 | 8.4 | 9.8 | 4.7 | 5.6 | 9.0 | 9.2 | 9.5 | 7.53750 |
80
 
81
+ ![mt-bench-2turn](./mt-bench-2turn.png)