Update README.md
Browse files
README.md
CHANGED
@@ -1,198 +1,81 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
8 |
|
|
|
9 |
|
|
|
10 |
|
11 |
## Model Details
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
-
|
39 |
-
### Direct Use
|
40 |
-
|
41 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
-
|
43 |
-
[More Information Needed]
|
44 |
-
|
45 |
-
### Downstream Use [optional]
|
46 |
-
|
47 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
-
|
49 |
-
[More Information Needed]
|
50 |
-
|
51 |
-
### Out-of-Scope Use
|
52 |
-
|
53 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
-
|
55 |
-
[More Information Needed]
|
56 |
-
|
57 |
-
## Bias, Risks, and Limitations
|
58 |
-
|
59 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
-
|
61 |
-
[More Information Needed]
|
62 |
-
|
63 |
-
### Recommendations
|
64 |
-
|
65 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
-
|
67 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
-
|
69 |
-
## How to Get Started with the Model
|
70 |
-
|
71 |
-
Use the code below to get started with the model.
|
72 |
-
|
73 |
-
[More Information Needed]
|
74 |
-
|
75 |
-
## Training Details
|
76 |
-
|
77 |
-
### Training Data
|
78 |
-
|
79 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
-
|
81 |
-
[More Information Needed]
|
82 |
-
|
83 |
-
### Training Procedure
|
84 |
-
|
85 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
-
|
87 |
-
#### Preprocessing [optional]
|
88 |
-
|
89 |
-
[More Information Needed]
|
90 |
-
|
91 |
-
|
92 |
-
#### Training Hyperparameters
|
93 |
-
|
94 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
-
|
96 |
-
#### Speeds, Sizes, Times [optional]
|
97 |
-
|
98 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
-
|
100 |
-
[More Information Needed]
|
101 |
|
102 |
## Evaluation
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
### Testing Data, Factors & Metrics
|
107 |
-
|
108 |
-
#### Testing Data
|
109 |
-
|
110 |
-
<!-- This should link to a Dataset Card if possible. -->
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
#### Factors
|
115 |
-
|
116 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
#### Metrics
|
121 |
-
|
122 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
### Results
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Summary
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
## Model Examination [optional]
|
135 |
-
|
136 |
-
<!-- Relevant interpretability work for the model goes here -->
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
-
|
140 |
-
## Environmental Impact
|
141 |
-
|
142 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
-
|
144 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
-
|
146 |
-
- **Hardware Type:** [More Information Needed]
|
147 |
-
- **Hours used:** [More Information Needed]
|
148 |
-
- **Cloud Provider:** [More Information Needed]
|
149 |
-
- **Compute Region:** [More Information Needed]
|
150 |
-
- **Carbon Emitted:** [More Information Needed]
|
151 |
-
|
152 |
-
## Technical Specifications [optional]
|
153 |
-
|
154 |
-
### Model Architecture and Objective
|
155 |
-
|
156 |
-
[More Information Needed]
|
157 |
-
|
158 |
-
### Compute Infrastructure
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
#### Hardware
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Software
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
## Citation [optional]
|
171 |
-
|
172 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
-
|
174 |
-
**BibTeX:**
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
**APA:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
## Glossary [optional]
|
183 |
-
|
184 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
|
186 |
-
[
|
187 |
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
[
|
191 |
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
[
|
195 |
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
[
|
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- moe
|
5 |
+
- merge
|
6 |
+
- mergekit
|
7 |
+
base_model:
|
8 |
+
- mlabonne/AlphaMonarch-7B
|
9 |
+
- beowolx/CodeNinja-1.0-OpenChat-7B
|
10 |
+
- SanjiWatsuki/Kunoichi-DPO-v2-7B
|
11 |
+
- mlabonne/NeuralDaredevil-7B
|
12 |
---
|
13 |
|
14 |
+
# Beyonder-4x7B-v3-random-lora
|
|
|
|
|
15 |
|
16 |
+
The idea was very simple. If heuristic methods for determining gate parameters in mergeiit-based MoE models can work well, then perhaps we could obtain a better performing model by fine-tuning only the gate parameters.
|
17 |
|
18 |
+
This model is an attempt at testing that idea. Unfortunately, the performance degraded slightly, but I am sharing it as an experimental result.
|
19 |
|
20 |
## Model Details
|
21 |
|
22 |
+
First, I created an MoE model using mergekit with gate_mode=random and the following four models:
|
23 |
+
- [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
|
24 |
+
- [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
|
25 |
+
- [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
|
26 |
+
- [mlabonne/NeuralDaredevil-7](https://huggingface.co/mlabonne/NeuralDaredevil-7B)
|
27 |
+
|
28 |
+
Then, I used LoRA to fine-tune only the gate parameters by specifying "gate" in target_modules.
|
29 |
+
The data used for fine-tuning is as follows. I used the Mistral prompt format.
|
30 |
+
- 5000 random samples from [llm-jp/oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)
|
31 |
+
- 5000 random samples from [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
|
32 |
+
- 5000 random samples from [hieunguyenminh/roleplay](https://huggingface.co/datasets/hieunguyenminh/roleplay)
|
33 |
+
- 5000 random samples from [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
|
34 |
+
- 5000 random samples from [m-a-p/CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction)
|
35 |
+
|
36 |
+
The training was conducted on runpod using 4xA6000 GPUs. The main training parameters are as follows:
|
37 |
+
- lora_r: 128
|
38 |
+
- lora_alpha: 256
|
39 |
+
- lora_dropout: 0.05
|
40 |
+
- lora_target_modules: "gate"
|
41 |
+
- learning_rate: 3e-4
|
42 |
+
- num_train_epochs: 5
|
43 |
+
- batch_size: 64
|
44 |
+
- max_seq_length: 2048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
## Evaluation
|
47 |
|
48 |
+
The evaluation results show a slight degradation in performance.
|
49 |
+
Apart from the possibility that this approach may not be effective, other potential causes could be issues with the dataset, training parameters, training setup (such as prompt formatting), and so on.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
### Nous ([LLM AutoEval](https://github.com/mlabonne/llm-autoeval))
|
52 |
|
53 |
+
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|
54 |
+
|---|---:|---:|---:|---:|---:|
|
55 |
+
| [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [π](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 |
|
56 |
+
| [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) [π](https://gist.github.com/mlabonne/3740020807e559f7057c32e85ce42d92) | 61.91 | 45.85 | 76.67 | 74.98 | 50.12 |
|
57 |
+
| [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) [π](https://gist.github.com/Aratako/f86144312989d69f92c64ea4f25a8bb6) | **60.29** | **45.82** | **76.69** | **69.94** | **48.72** |
|
58 |
+
| [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [π](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
|
59 |
+
| [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) [π](https://gist.github.com/mlabonne/895ff5171e998abfdf2a41a4f9c84450) | 58.29 | 44.79 | 75.05 | 65.68 | 47.65 |
|
60 |
+
| [mlabonne/Beyonder-4x7B-v2](https://huggingface.co/mlabonne/Beyonder-4x7B-v2) [π](https://gist.github.com/mlabonne/f73baa140a510a676242f8a4496d05ca) | 57.13 | 45.29 | 75.95 | 60.86 | 46.4 |
|
61 |
+
| [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) [π](https://gist.github.com/mlabonne/08b5280c221fbd7f98eb27561ae902a3) | 50.35 | 39.98 | 71.77 | 48.73 | 40.92 |
|
62 |
|
63 |
+
### [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)
|
64 |
|
65 |
+
**1-turn**
|
66 |
+
|Model|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score|
|
67 |
+
|---|---|---|---|---|---|---|---|---|---|
|
68 |
+
| [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) | 6.7 | 8.3 | 9.7 | 6.7 | 6.3 | 9.3 | 9.7 | 10.0 | 8.33750 |
|
69 |
+
| [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) | **6.6** | **8.2** | **9.6** | **6.3** | **6.4** | **8.7** | **9.4** | **9.5** | **8.08750** |
|
70 |
+
| [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 5.3 | 8.5 | 9.9 | 6.8 | 6.0 | 9.1 | 9.55 | 8.9 | 8.00625 |
|
71 |
|
72 |
+
![mt-bench-1turn](./mt-bench-1turn.png)
|
73 |
|
74 |
+
**2-turn**
|
75 |
+
|Model|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score|
|
76 |
+
|---|---|---|---|---|---|---|---|---|---|
|
77 |
+
| [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) | 5.4 | 7.6 | 10.0 | 3.5 | 5.5 | 9.0 | 9.6 | 9.1 | 7.46250 |
|
78 |
+
| [**Aratako/Beyonder-4x7B-v3-random-lora**](https://huggingface.co/Aratako/Beyonder-4x7B-v3-random-lora) | **5.1** | **8.1** | **9.9** | **4.1** | **3.7** | **8.55** | **9.0** | **7.7** | **7.01875** |
|
79 |
+
| [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 4.1 | 8.4 | 9.8 | 4.7 | 5.6 | 9.0 | 9.2 | 9.5 | 7.53750 |
|
80 |
|
81 |
+
![mt-bench-2turn](./mt-bench-2turn.png)
|